3s 3p 3d
1s
2s 2p


Валентность в данном состоянии = VII

Таким образом, для хлора характерны валентности: I, III, V, VII

Аналогичные валентности и степени окисления характерны для Br и I.

Для F, в отличие от остальных галогенов, характерны только степени окисления -1, 0 и валентность I, так как у него самая высокая электроотрицательность среди всех элементов и нет свободных орбиталей на последнем уровне.

Физические свойства простых веществ:

В качестве простых веществ все галогены встречаются в виде молекул Э 2 (F 2 , Cl 2 , Br 2 , I 2). В молекуле атомы соединены ковалентной неполярной химической связью.

Образуют молекулярные кристаллические решетки.

Встречаемость в природе:

F 2 , Cl 2 , Br 2 , I 2 практически не встречаются из-за своей высокой химической активности.

В основном галогены в природе встречаются в составе солей:

NaCl – каменная соль (после очистки – поваренная соль)

KCl ∙ NaCl - сильвинит

KCl ∙ MgCl 2 - карналлит

Cl входит в состав хлорофилла растений.

Получение (на примере хлора):

1. В промышленности – электролизом раствора или расплава NaCl.

а). Расплав: 2NaCl → 2Na + Cl 2

на катоде: Na + +1e → Na 0

на аноде: 2Cl - - 2e → Cl 2 0

б). Раствор: 2NaCl + 2H 2 O → H 2 + Cl 2 + 2NaOH

на катоде: 2H 2 O + 2e → H 2 0 + 2OH -

на аноде: 2Cl - - 2e → Cl 2 0

2. В лаборатории – реакцией соляной кислоты с сильными окислителями:

а). MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

б). 2KMnO 4(крист.) + 16HCl (конц.) = 5Cl 2 + 2MnCl 2 + 2KCl + 8H 2 O

в). KClO 3 + 6HCl (конц.) = 3Cl 2 + KCl + 3H 2 O

бертолетова соль

Химические свойства галогенов (на примере хлора):

Все галогены являются сильными окислителями!

1). Взаимодействие с простыми веществами:

а). С металлами:

2Na + Cl 2 = 2NaCl

2Fe + 3Cl 2 = 2FeCl 3

Cu + Cl 2 = CuCl 2

б). С неметаллами:

H 2 + Cl 2 = 2HCl (реакция идет на свету)

2P + 3Cl 2 = 2PCl 3 (реакция идет при нагревании)

хлорид фосфора (III)

2P + 5Cl 2 = 2PCl 5 (реакция идет при нагревании)

хлорид фосфора (V)

Si + 2Cl 2 = SiCl 4 (реакция идет при нагревании)

хлорид кремния (IV)

С азотом и кислородом хлор и другие галогены не взаимодействуют, так как и те, и другие в реакциях проявляют окислительные свойства, поэтому оксиды галогенов можно получить только косвенным путем.

2). Взаимодействие со сложными веществами:

а). С водой:

В направлении F 2 → Cl 2 → Br 2 → I 2 растворимость в воде падает.

Хлор растворим в воде, но плохо (2,5 объема в 1 объеме воды при 20ºС). Раствор хлора в воде называется «хлорная вода». При этом идет реакция:

Cl 2 + H 2 O = HCl + HClO (реакция диспропорционирования)

HClO → HCl +

атомарный кислород

За счет образования атомарного кислорода растворенный в воде хлор обладает высоким окисляющим, отбеливающим (в том числе обесцвечивает органические красители) и обеззараживающим действием.

Фтор не может иметь положительных степеней окисления, поэтому с водой не диспропорционирует:

2F 2 + 2H 2 O = 4HF + O 2

I 2 плохо растворим в воде и практически не взаимодействует с ней, но хорошо растворим в органических растворителях (спирте, хлороформе), а также KI. Раствор I 2 в KI называется «раствор Люголя».

б). С щелочами диспропорционируют:

на холоду: Cl 2 + 2KOH = KCl + KClO + H 2 O

при нагревании: 3Cl 2 + 6KOH = 5KCl + KClO 3 + 3H 2 O

в). С растворами солей галогеноводородных кислот (находящихся ниже по группе):

Cl 2 + 2NaBr = 2NaCl + Br 2

Cl 2 + 2NaI = 2NaCl + I 2

Но! F 2 + NaCl ≠ , так как F 2 в первую очередь взаимодействует с водой.

Подобным образом идут реакции с галогеноводородами: Cl 2 + 2HI = I 2 + 2HCl

Качественная реакция на I 2:

I 2 + крахмал = темно синее окрашивание

Образующееся соединение при нагревании разрушается и происходит обесцвечивание реакционной смеси. После охлаждения темно синяя окраска снова возвращается, так как соединение образуется заново.

Галогеноводороды

Получение (на примере HCl):

1. В промышленности – из простых веществ:

H 2 + Cl 2 = 2HCl

2. В лаборатории – из солей:

NaCl (крист.) + H 2 SO 4(конц.) = HCl + NaHSO 4 (аналогично HF)

Но: 2NaBr (тв.) + H 2 SO 4(конц.) = Br 2 + 2NaHSO 4 (аналогично HI, так как HBr и HI сильные восстановители)

Химические свойства (на примере HCl):

Галогеноводороды в обычных условиях мало реакционноспособны, зато их растворы в воде (кислоты) химически очень активны.

Соляная, бромоводородная и йодоводородная кислоты – сильные электролиты, а фтороводородная – слабый электролит.

Соляная кислота HCl – бесцветная жидкость, летучая, максимальная концентрация 35 – 39%, во влажном воздухе дымит.

1. Взаимодействие с металлами, стоящими в ряду напряжений до водорода!:

Fe + HCl = FeCl 2 + H 2

а). 2Na + 2H 2 O = 2NaOH + H 2

б). NaOH + HCl = NaCl + H 2 O

2. Взаимодействие с основными и амфотерными оксидами:

MgO + 2HCl = MgCl 2 + H 2 O

CuO + 2HCl = CuCl 2 + H 2 O (при нагревании)

ZnO + 2HCl = ZnCl 2 + H 2 O

3. Взаимодействие с основаниями и амфотерными гидроксидами:

NaOH + HCl = NaCl + H 2 O

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

4. Взаимодействие с солями (если образуется осадок, газ или слабый электролит):

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

FeS + 2HCl = FeCl 2 + H 2 S

Качественные реакции на хлорид-, бромид- и йодид-ионы:

а). NaCl + AgNO 3 = AgCl↓ + HNO 3

белый творожистый

Осадок растворяется в растворе аммиака:

AgCl + 2NH 4 OH = Cl + 2H 2 O

При добавлении кислоты снова выпадает белый творожистый осадок:

Cl + 2HNO 3 = AgCl↓ + 2NH 4 NO 3

б). NaBr + AgNO 3 = AgBr↓ + HNO 3 (осадок плохо растворим в аммиаке)

бледно-желтый осадок

в). NaI + AgNO 3 = AgI↓ + HNO 3 (осадок не растворим в аммиаке)

светло-желтый осадок

Элементы, входящие в VII группу периодической системы, делятся на две подгруппы: главную - подгруппу галогенов - и побочную - подгруппу марганца. В эту же группу помещают н водород, хотя его атом имеет на внешнем, валентном, уровне единственный электрон и его следовало бы поместить в I группу. Однако водород имеет очень мало общего как с элементами основой подгруппы - щелочными металлами, так и с элементами побочной подгруппы - медью, серебром и золотом. В то же время он, как и галогены, присоединяя в реакциях с активными металлами электрон, образует гидриды, имеющие некоторое сходство с галогенидами.

К подгруппе галогенов относятся фтор, хлор, бром, иод и астат. Первые четыре элемента встречаются в природе, последний получен искусственно и поэтому изучен значительно меньше остальных галогенов. Слово галоген означает солеобразующий. Это название элементы подгруппы получили благодаря легкости, с которой они реагируют со многими металлами, образуя соли.

Все галогены имеют структуру внешней электронной оболочки s 2 p 5 . Поэтому они легко принимают электрон, образуя устойчивую благородногазовую электронную оболочку (s 2 р 6). Наименьший радиус атома в подгруппе - у фтора, у остальных он увеличивается в ряду F

Из всех галогенов только фтор, находящийся во II периоде, не имеет незаполненного d-уровня. По этой причине он не может иметь больше одного неспаренного электрона и проявляет валентность только 1. В атомах других галогенов d-уровень не заполнен, что дает им возможность иметь различное количество неспаренных электронов и проявлять валентность 1, +1, +3, +5 и +7, наблюдающуюся в кислородных соединениях хлора, брома и иода.

К подгруппе марганца принадлежат марганец, технеций и рений. В отличии от галогенов элементы подгруппы марганца имеют на внешнем электронном уровне всего два электрона и поэтому не проявляют способности присоединять электроны, образуя отрицательно заряженные ионы.

Марганец распространен в природе и широко используется в промышленности.

Технеций радиоактивен, в природе не встречаемся, а получен искусственно (впервые - Э. Сегре и К. Перрье, 1937}. Этот элемент образуется вследствие радиоактивного распада урана. Рений относится к числу рассеянных элементов. Он не образует самостоятельных минералов, а встречается в качестве спутника некоторых минералов, особенно молибденовых. Он был открыт В. и И. Ноддак в 1925 г. Сплавы, имеющие небольшие добавки рения, обладают повышенной устойчивостью против коррозии. Добавка рения к и ее сплавам увеличивает их механическую прочность. Это свойство рения позволяет применять его вместо благородного металла иридия. Платино-платинорениевые термопары работают лучше платино-платиноиридиевых, но их нельзя использовать при очень высоких температурах, так как образуется летучее соединение Re 2 O 7 .

65. Водород

Водород бы открыт английским физиком и был Г. Кавендишем в 1766 г.

Нахождение в природе. Содержание водорода в земной коре, или его кларк, составляет 0,15 %. Этот элемент входит в состав многих минералов, всех органических соединений, а также воды, которая покрывает почти 3/4 поверхности Земного шара. В свободном состоянии водород встречается в небольших количествах в верхних слоях атмосферы и некоторых природных горючих газах.

Физические свойства. При обычных условиях водород - газ без цвета и запаха. Водород - самый легкий из всех элементов: в 14,5 раза легче воздуха, слабо растворим в воде (в 100 объемах воды при комнатной температуре растворяются 2 объема водорода). При температуре 253 С и атмосферном давлении водород переходит в жидкое состояние, а при 259 С затвердевает. Из-за малой молекулярной массы он.легко диффундирует (проходит) через пористые перегородки и даже через нагретую металлическую перегородку. Вот почему резиновые шарики, наполненные водородом и очень тщательно завязанные, спустя некоторое время сдуваются. При повышенной температуре водород хорошо растворим во многих металлах (никеле, платине, палладии).

В природе водород существует в виде трех изотопов: протий - с массовым числом 1, дейтерий - с массовым числом 2 и тритий - с массовым числом 3. 99,98 % природного водорода составляет протий.

Химические свойства. Атом водорода имеет всего один электрон, поэтому при образовании химических соединений может легко отдавать его, либо образовывать одну общую электронную пару, либо присоединять еще один электрон, образуя двухэлектронную внешнюю оболочку, как у благородного газа гелия.

Из-за малого заряда ядра атом водорода сравнительно слабо притягивает электроны и может присоединять их только в том случае, когда другой элемент легко их отдает. Такими элементами являются щелочные и щелочноземельные металлы, которые при нагревавши в атмосфере водорода образуют солеобразные соединения - гидриды:

2 К+ Н 2 = 2 КН (гидрид калия)

Са + Н 2 = СаН 2 (гидрид кальция)

Для водорода более характерны соединения, в которых он проявляет положительную степень окисления. Он взаимодействует со многими неметаллами. В зависимости от активности неметаллов реакция может протекать с различной скоростью. Так, со фтором водород взаимодействует всегда со взрывом:

F 2 + H 2 = 2 НF {фтороводород)

Хлор взаимодействует с водородом значительно спокойнее: в темноте и без нагревания реакция протекает довольно медленно, на свету - значительно быстрее, а при наличии инициатора (искра, нагревание) - моментально и со взрывом. Поэтому смесь хлора и водорода является гремучей и требует чрезвычайной осторожности в обращении. Водород хорошо горит в атмосфере хлора. Во всех случаях реакция водорода с хлором протекает по уравнению

Н 2 + С1 2 = 2 НС1 (хлороводород)

С бромом и иодом водород реагирует очень медленно.

Так же активно, как с хлором, водород реагирует и с кислородом

2 Н 2 + О 2 = 2 Н 2 О

Смесь водорода с кислородом тоже является гремучей и при наличии инициатора взрывается.

С другими неметаллами водород реагирует либо при высокой температуре, либо при высоких. температуре и давлении. Например, с серой водород реагирует только при нагревании, а с азотом - при нагревании и высоком давлении:

Н 2 + S = Н 2 S (сероводород)

3 H 2 + N 2 = 2 NН 3 (аммиак)

Водород может отнимать кислород или галогены от многих металлов и неметаллов. В этом случае он выступает как восстановитель:

СuО + Н 2 = Сu + Н 2 О

СuСl 2 + Н 2 = Сu + 2 НС1

Эти реакции используются в металлургии для получения свободных металлов. Они, как правило, протекают при высоких температурах. Чем активнее металл, тем более высокая температура требуется для его восстановления.

Атомарный водород более активен, чем молекулярный, поэтому все характерные для водорода реакции с атомарными водородом протекают более энергично. Если молекулярный водород восстанавливает металлы из.солей только при нагревании, то атомарный водород может восстанавливать многие металлы из их солей даже в водных растворах.

Образование молекулы водорода из его атомов сопровождается выделением большого количества теплоты:

Н + Н = Н 2 + 435 кДж

Если направить ток газа, содержащего атомарный водород, на твердое тело, то за счет. теплоты, выделяющейся вследствие образовании молекул водорода из атомов, температура поверхности тела повысится до 4000 С. Эту реакцию используют при сварочных работах.

Получение. В лабораторных условиях водород получают:

1) взаимодействием металла (чаще всего цинка) с соляной или

разбавленной серной. кислотой:

Zn + 2 НСl = ZnС1 2 + Н 2 

В ионной форме уравнение имеет следующий вид:

Zn + 2 Н  = Zn 2  + Н 2 

Реакцию проводят в аппарате Киппа (рис. 40) . В средний шар загружают гранулированный" цинк, а верхний при закрытом кране заполняют раствором кислоты. В работающем аппарате кислота из верхнего шара опускается в нижнюю емкость, откуда попадает в средний шар, где реагирует с цинком. Реакция при открытом кране продолжается до полного растворения цинка. Если кран закрыть, водород из среднего шара не выходит и вытесняет из него кислоту в нижнюю емкость, откуда избыток ее переходит в верхний шар. Реакция прекращается. Как только кран открывают, кислота снова контактирует с цинком, образуется водород;

2) взаимодействием со щелочами металлов, гидроксиды которых обладают амфотерными свойствами (алюминий, цинк):

Zn + 2 КОН + 2 Н 2 О = К 2 + Н 2 

2 А1 + 6 КОН + 6 Н 2 О = 2 К 3 [А1(ОН) 6 ] + 3 Н 2 

3) электролизом воды, к которой для увеличения электроводности прибавляют электролит - щелочь или сульфат щелочного металла. Хлориды для этой цели менее пригодны, так как при их электролитическом разложении на аноде выделяется хлор.

В промышленности водород получают другими способами:

1) обработкой раскаленного угля водяным паром в специальных аппаратах - газогенераторах. В результате взаимодействия водяного пара с углеродом образуется так называемый водяной газ, состоящий из водорода и монооксида углерода:

С + Н 2 О = СО + Н 2

При обработке водяного газа водяным паром в присутствии железного катализатора монооксид углерода превращается в диоксид, который легко растворяется в воде при повышенном давлении или в растворах щелочей:

СО + Н 2 О = СО 2 + Н 2

СО 2 + Н 2 О  Н 2 СО 3

СО 2 + 2 КОН = К 2 СО 3 + Н 2 О

2) конверсией (превращением) метана с водяным паром, углекислым газом или смесью водяного пара и углекислого газа:

СН 4 + Н 2 О = СО + 3 Н 2

СН 4 + СО 2 = 2 СО + 2 Н 2

3 СН 4 + СО 2 + 2 Н 2 О = 4 СО + 8 Н 2

Эти процессы протекают при температуре около 1000 С в присутствии катализатора на основе никеля с добавками оксидов магния, алюминия и других металлов. Полученная смесь может использоваться как сырье для производства различных органических веществ (метанола, альдегидов, углеводородов и др.) или получения водорода (смесь обрабатывают водяным паром, как показало выше);

3) как побочный продукт производства хлора и гтдроксидов щелочных металлов электролизом растворов их хлоридов.

Применение. Водород - ценное сырье для химической промышленности. Он, используется для получения аммиака, метанола, альдегидов, углеводородов, превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.). Благодаря высокой температуре горения в кислороде водород применяют также при резке и сварке металлов (автоген).

66. Хлор

Хлор был открыт шведским химиком К. В. Шееле в 1774 г.

Нахождение в природе. Из-за высокой активности хлор в свободном состоянии в природе не встречается. Широко известны его природные соединения - хлориды щелочных и щелочноземельных металлов, наиболее распространенными из которых являются каменная (поваренная) соль NаС1, сильвинит - смесь хлоридов калия и натрия - и карналлит КС1·МgC1 2 ·6Н 2 О. Как примеси к названным минералам встречаются хлориды других металлов. Значительное количество хлоридов различиях металлов содержится в морской воде.

Физические свойства. При обычных условиях хлор - газ желто-зеленого цвета с резким запахом, ядовит. Он в 2,5 раза тяжелее воздуха. В 1 объеме воды при 20 С растворяется около 2 объемов хлора. Такой раствор называется хлорной водой. При атмосферном давлении хлор при 34 С переходит в жидкое состояние, а при 101 С затвердевает. При комнатной температуре он переходит в жидкое состоянии только при давлении 600 кПа (6 атм). Хлор хорошо растворим во многих органических растворителях, особенно в тетрахлориде углерода, с которым не взаимодействует.

Химические свойства. На внешнем электронном уровне атома хлора находятся 7 электронов (s 2 p 5), поэтому он легко присоединяет электрон, образуя анион Сl  . Благодаря наличию незаполненного d-уровня в атоме хлора могут появляться 1, 3, 5 и 7 неспаренных электронов, поэтому в кислородсодержащих соединениях он может иметь степень окисления +1, +3, +5 и +7.

В отсутствие влаги хлор довольно инертен, но в присутствии даже следов влаги активность его резко возрастает. 0н хорошо взаимодействует с металлами:

2 Fе + 3 С1 2 = 2 FеС1 3 (хлорид железа (III)

Cu + С1 2 = СuС1 2 (хлорид меди (II)

и многими неметаллами:

Н 2 + С1 2 = 2 НСl (хлороводород)

2 S + С1 2 = S 2 Cl 2 (хлорид серы (1))

Si + 2 С1 2 = SiС1 4 (хлорид кремния. (IV))

2 Р + 5 С1 2 = 2 РС1 5 (хлорид фосфора (V))

С кислородом, углеродом и азотом хлор в непосредственное взаимодействие не вступает.

При растворении хлора в воде образуется две кислоты: хлороводородная, или соляная, и хлорноватистая:

С1 2 + Н 2 О = НСl + НСlO

При взаимодействии хлора с холодными растворами щелочей образуются соответствующие соли этих кислот:

С1 2 + 2 NaOН = NaС1 + NaClО + Н 2 О

Полученные растворы называются жавелевой водой, которая, как и хлорная вода, обладает сильными окислительными свойствами благодаря наличию иона ClO  и применяется для отбеливания тканей и бумаги. С горячими растворами щелочей хлор образует соответствующие соли соляной и хлорноватой кислот:

3 С1 2 + 6 NаОН = 5 NаСl + NаС1O 3 + 3 Н 2 О

3 С1 2 + 6 КОН = 5 КСl + КС1O 3 + 3 Н 2 О

Образовавшийся хлорат калия называется бертолетовой солью.

При нагревании хлор легко взаимодействует со многими органическими веществами. В предельных и ароматических углеводородах он замещает водород, образуя хлорорганическое соединение и хлороводород, а к непредельным присоединяется по месту двойной или тройной связи. При очень высокой температуре хлор полностью отбирает водород у углерода. При этом образуются хлороводород и сажа. Поэтому высокотемпературное хлорирование углеводородов всегда сопровождается сажеобразованием.

Хлор - сильный окислитель, поэтому легко взаимодействует со сложными веществами, в состав которых входят элементы, способные окисляться до более высокого валентного состояния.

2 FеС1 2 + С1 2 = 2 FеС1 3

Н 2 SO 3 + С1 2 + Н 2 О = Н 2 SО 4 + 2 НСl

Получение. В лабораторных условиях хлор получают действием концентрированной соляной кислоты на различные окислители, например диоксид марганца (при нагревании), перманганат калия или бертолетову соль:

МпО 2 + 4 НСl = МпС1 2 + С1 2 + 2 Н 2 О

2 КМпО 4 + 16 НСl = 2 КС1 + 2 МnС1 2 + 5 С1 2 + 8 Н 2 О

КС1O 3 + 6 НСl = КС1 + 3 С1 2 + 3 Н 2 О

В промышленности хлор получают электролизом растворов, или расплавов хлоридов щелочных металлов. При электролизе расплава хлорида щелочного металла на катоде выделяется щелочной металл, а на аноде - хлор:

2 Nа  + 2е  = 2 Nа

2 Сl   2е  = Сl 2

В растворе хлорид щелочного металла диссоциирует на ионы:

NаС1  Na  + С1 

Вода как слабый электролит также диссоциирует на ионы:

Н 2 О  Н  + OH 

При пропускании электрического тока через такой раствор на катоде из двух катионов - Nа  и Н  - разряжается катион менее активного водорода, а на аноде из двух анионов - ОН  и Сl  - хлорид-ион:

2 Н  + 2 е  = Н 2

2 Сl 2 е  = С1 2

По мере протекания электролиза в катодном пространстве накапливаются ионы ОН  и образуется едкий натр. Так как хлор может реагировать со шелочью катодное и анодное пространства разделено полупроницаемой диафрагмой из асбеста.

Применение. Ежегодное мировое потребление хлора превышает 1 млн. т. Он используется для отбеливания бумаги и тканей, обеззараживания питьевой воды, производства различных. ядохимикатов, соляной кислоты, хлорорганических веществ и растворителей, а также в лабораторной практике.

Хлороводород и соляная кислота. Хлороводород представляет собой бесцветный газ с резким, удушливым запахом. При атмосферном давлении и температуре 84 С он переходит в жидкое состояние, а при 112 С затвердевает. Хлороводород в 1,26 раза тяжелее воздуха. В 1 л воды при 0 С растворяется около 500 л хлороводорода.

Сухой хлороводород довольно инертный и не реагирует даже с активными металлами, а в присутствии следов влаги такая реакция протекает довольно энергично.

Хлороводород может присоединяться к непредельным углеводородам по месту двойной или тройной связи, образуя хлорорганические соединения.

В лабораторных условиях хлороводород получают действием концентрированной серной кислоты на сухой хлорид натрия:

NаСl + H 2 SО 4 = NаНSO 4 + НСl

2 NаСl + Н 2 SO 4 = Nа 2 SO 4 + 2 НСl

Первая из этих реакций протекает при слабом нагревании, а вторая - при более высокой температуре. Поэтому получать хлороводород в лаборатории лучше по первому уравнению и серной кислоты следует брать столько, сколько требуется для образования гидросульфата натрия.

В промышленности хлороводород получают действием концентрированной серной кислоты на сухой хлорид натрия при высокой температуре (по второму уравнению), а также сжиганием водород в атмосфере хлора:

Н 2 + Сl 2 = 2 НС1

Хлороводород образуется в значительных количествах как побочный продукт при хлорировании насыщениях и ароматических углеводородов.

Раствор хлороводорода в воде называется соляной кислотой . Это сильная кислота, она реагирует со всеми металлами, стоящими в ряду напряжений левее водорода, с основными и амфотерными оксидами, основаниями и солями:

Fе + 2 НС1 = FеС1 2 + Н 2 

СuО + 2 НСl = СuСl 2 + Н 2 О

ZnO + 2 НСl = ZnС1 2 + Н 2 О

Fе(ОН) 3 + 3 НСl = FеСl 3 + 3 H 2 О

АgNО 3 + НСl = АgCl + НNО 3

Nа 2 СO 3 + 2 НCl = 2 NаСl + Н 2 О + СО 2 

Кроме свойств, присущих сильным кислотам, эта кислота характеризуется также восстановительными свойствами: концентрированная соляная кислота реагирует с различными сильными окислителями с образованием свободного хлора.

Соли соляной кислоты называются х л о р и д а м и. Большинство из них хорошо растворяется в воде и полностью диссоциирует на ионы. Слабораствориными являются хлорид свинца РbСl 2 , хлорид серебра AgCl, хлорид ртути (I) Нg 2 Сl 2 (каломель) и хлорид мели (I) СuСl.

Cолянyю кислоту получают растворением хлороводорода в воде. Этот процесс осуществляют в специальных поглотительных башнях, в которых жидкость подается сверх вниз, а газ - снизу вверх (принцип противотока). В такой башне свежие порции воды в верхней части башни встречаются с газовым потоком, содержащим уже мало хлороводорода, а газ с высоким содержанием хлороводорода в нижней части башни встречается с концентрированной соляной кислотой. Так как растворимость газа в жидкости прямо пропорциональна концентрации его в газовой фазе и обратно пропорциональна концентрации его в растворе, при этом методе достигается полное извлечение хлороводорода из газа и получение концентрированного раствора соляной кислоты. Насыщенный при комнатной температуре водный раствор хлороводорода может содержать не более 42 масс. % хлороводорода и его плотность не превышает 1,20 г/см 3 . Поступающая в продажу соляная кислота содержит 36-37 хлороводорода и имеет плотность 1,19 г/см 3 .

Соляную кислоту хранят и транспортируют в стальных цистернах, покрытых изнутри кислотоупорной резиной, или в стеклянных баллонах.

Хлороводород, соляная кислота и ее соли широко используют в промышленности и лабораторной практике. Хлороводород применяют в органическом синтезе для получения хлорорганических соединений. Соляную кислоту используют для получения солей, травления металлов, а также как реактив в химических лабораториях.

Из солей соляной кислоты наибольшее применение находит:

каменная, или поваренная , соль NаС1. Она используется как сырье для получения хлора, металлического натрия, едкого натра, хлороводорода и соды, а также в пищевой промышленности;

хлорид калия КС1. Применяется как калийное удобрение, а также как сырье для получения других солей калия и едкого кали;

хлорид кальция СаС1 2 . Безводная соль применяется для высушивания газов и многих органических жидкостей и как осушительный агент в эксикаторах. При этом образуется кристаллогидрат СuСl 2 ·nН 2 О (n = 2-6). Насыщенный водный раствор хлорида кальция используют для обогащения сырья флотационным методом;

хлорид бария ВаС1 2 . Применяется как ядохимикат в сельском хозяйстве;

хлорид цинка ZnCl 2 . Используется при пайке для снятия пленки оксидов (травление металла), а также для пропитки деревянных предметов с целью предохранения их от гниения при закапывании в землю.

Кислородные соединения хлора . Хлор образует четыре кислородсодержащие кислоты: хлорнотистую, хлористую, хлорноватую и хлорную.

Хлорноватистая кислота НСlO образуется при взаимодействии хлора с водой, а также ее солей с сильными минеральными кислотами. Она относится к слабым кислотам, очень неустойчива. Состав продуктов реакции ее разложения зависит от условий. При сильном освещении хлорноватистой кислоты, наличии в растворе восстановителя, а также длительном стоянии она разлагается с выделением атомарного кислорода:

НСlO = HСl + O

В присутствии водоотнимающих веществ образуется оксид хлора (I):

2 НСlO = 2 Н 2 О + Сl 2 O

3 НСlO = 2 НСl + НСlO 3

Поэтому при взаимодействии хлора с горячим раствором щелочи образуется соли не соляной и хлорноватистой, а соляной и хлорноватой кислот:

6 NаОН + 3 Сl 2 = 5 NаСl + NаСlО 3 + 3 Н 2 О

Соли хлорноватистой кислоты - г и п о х л о р и т ы - очень сильные окислители. Они образуются при взаимодействии хлора со щелочами на холоду. Одновременно образуются соли соляной кислоты. Из таких смесей наибольшее распространение получили хлорная известь и жавелевая вода.

Хлорная, или белильная, известь СаОСl 2 , или СаСl(СlO), образуется при взаимодействии хлора с порошкообразным гидроксидом кальция - пушенкой :

Са(ОН) 2 + Сl 2 = ClOCaCl + H 2 O

2 Са(ОН) 2 + 2 Сl 2 = СаСl 2 + Са(ОСl) 2 + 2 Н 2 О

Качество хлорной извести определяется содержанием в ней гипохлорита. Она обладает очень сильными окислительными свойствами и может окислять даже соли марганца до перманганат:

5 СаОСl 2 + 2 Mn(NО 3) 2 + 3 Са(ОН) 2 = Са(МпO 4) 2 + 5 СаСl 2 + 2 Са(NО 3) 2 + 3 H 2 O

Под действием углекислого газа, содержащегося в воздухе, она разлагается с выделением хлора:

СаОСl 2 + СО 2 = СаСО 3 + Сl 2

СаСl 2 + Са(ОСl) 2 + 2 СО 2 = 2 СаСО 3 + 2 Сl 2

Хлорная известь применяется как отбеливающее и дезинфицирующее

вещество.

Хлористая кислота НСlO 2 образуется при действии концентрированной серной кислоты на хлориты щелочных металлов, которые получаются как промежуточные продукты при электролизе растворов хлоридов щелочных металлов в отсутствие диафрагмы между катодным и анодным пространствами. Это слабая, неустойчивая кислота, очень сильный окислитель в кислой среде. При взаимодействии ее с соляной кислотой выделяется хлор:

НСlO 2 + 3 НС1 = Сl 2 + 2 Н 2 О

Хлориты натрия используются для получения диоксида хлора, при обеззараживании воды, а также как отбеливаюший агент.

Хлорноватая кислота НСlO 3 образуется при действии на ее соли -

х л о р а т ы - серной кислоты. Это очень неустойчивая кислота, очень сильный окислитель. Может существовать только в разбавленных растворах. При упаривании раствора НСlO 3 при низкой температуре в вакууме можно получить вязкий раствор, содержащий около 40 % хлорной кислоты. При более высоком содержании кислоты раствор разлагается со взрывом. Разложение со взрывом происходит и при меньшей концентрации в присутствии восстановителей. В разбавленных растворах хлорная кислота проявляет окислительные свойства, причем реакции протекают вполне спокойно:

НСlO 3 + 6 НВr = НСl + 3 Вr 2 + 3 Н 2 О

Соли хлорноватой кислоты - хлораты - образуются при электролизе растворов хлоридов в отсутствие диафрагмы между катодным и анодным пространствами, а также при растворении хлора в горячем растворе щелочей, как показано выше. Образующийся при электролизе хлорат калия (бертолетова соль) слабо растворяется в воде и в виде белого осадка легко отделяется от других солей. Как и кислота, хлораты - довольно сильные окислители:

КСlO 3 + 6 НСl = КСl + 3 Сl 2 + 3 Н 2 О

Хлораты применяются для производства взрывчатых веществ, а также получения кислорода в лабораторных условиях и солей хпорной -кислоты - п е р х л о р а т о в. При нагревании бертолетовой соли в присутствии диоксида марганца МпО 2 , играющего роль катализатора, выделяется кислород. Если же нагревать хлорат калия без катализатора, то он разлагается с образованием калиевых солей хлороводородной и хлорной кислот:

2 КСlО 3 = 2 КСl + 3 O 2

4 КСlO 3 = КСl + 3 КСlO 4

При обработке перхлоратов концентрированной серной кислотой можно получить хлорную кислоту :

КСlO 4 + Н 2 SO 4 = КНSO 4 + НСlO 4

Это самая сильная кислота. Она наиболее устойчива из всех кислород содержащих кислот хлора, однако безводная кислота при нагревании, встряхивании или контакте с восстановителями может разлагаться со взрывом. Разбавленные растворы хлорной кислоты вполне устойчивы и безопасны в работе. Хлораты калия, рубидия, цезия, аммония и большинства органических оснований плохо растворяются в воде.

В промышленности перхлорат калия получают электролитическим окислением бертолетовой соли:

2 Н  + 2 е  = Н 2  (на катоде)

СlО 3   2 е  + Н 2 О = СlO 4  + 2 Н  (на аноде)

67. Бром

Бром был открыт в 1826 г. французским химиком А. Ж. Баларом.

Нахождение в природе . В свободном состоянии бром в природе не встречается. Он не образует также самостоятельных минералов, а его соединения (в большинстве случаев со щелочными металлами) являются примесями хлорсодержащих минералов, таких, как каменная соль, сильвинит и карналит. Соединения брома встречаются также в водах некоторых озер и буровых скважин.

Физические свойства . Бром - легколетучая красно-бурая жидкость с неприятным, удушливым запахом. Кипит при 58,8 С и затвердевает при 7,3 С. В 1 л воды при 20 С растворяется 35 г брома.

В органических растворителях бром растворяется значительно лучше.

Химические свойства . По химическим свойствам бром напоминает хлор. На внешнем электронном уровне его атома находится 7 электронов (s 2 p 5), поэтому он легко присоединяет электрон, образуя ион Br  . Благодаря наличию незаполненного d-уровня бром может иметь 1, 3, 5 и 7 неспаренных электронов и в кислородсодержащих соединениях проявляет степень окисления +1, +3, +5 и +7.

Подобно хлору бром взаимодействует с металлами и неметаллами:

2 Al + 3 Вr 2 = 2 AlBr 3 (бромид алюминия)

Н 2 + Вr 2 = 2 НВr (бромоводород)

2 Р + 3 Br 2 = 2 РВr 3 (бромид фосфора (III))

Все реакции брома протекают менее энергично, чем хлора. Менее энергично реагирует бром и с водой. При растворении в воде реагирует только часть брома, образуя бромоводородную и бромноватистую кислоты:

Вr 2 + Н 2 О  НВr + НВrО

При растворении брома в растворе щелочи на холоду образуются соли

этих кислот:

Вr 2 + 2 NаОН = NaBr + NаВrО + Н 2 О

С предельными и непредельными углеводородами бром также реагирует менее энергично, чем хлор:

С 6 Н 6 + Вr 2 = С 6 H 5 Br + НВr

СН 2 =СН 2 + Вr 2 = СH 2 ВrСН 2 Вr

Бром, как и хлор, является окислителем. Так, он легко окисляет сернистую кислоту до серной:

Н 2 SO 3 + Вr 2 + Н 2 О = Н 2 SО 4 + 2 НВr

Если к раствору сероводорода прибавить бромную воду, то красно-бурая окраска исчезает и раствор мутнеет вследствие выделения серы:

Н 2 S + Вr 2 = 2 НBr + S

Получение . В лабораторных условиях бром получают действием на различные окислители бромоводородной кислоты или ее солей в сернокислотной среде:

2 КМnO 4 + 16 НВr = 2 КВr + 2 МnВr 2 + 5 Вr 2 + 8 Н 2 О

КСlO 3 + 6 НВr = КСl + 3 Вr 2 + 3 Н 2 O

2 КМnO 4 + 10 КBr + 8 Н 2 SO 4 = 6 К 2 SО 4 + 2 МnSO 4 + 5 Вr 2 + 8 Н 2 О

В промышленности бром получают действием хлора на различные бромиды:

2 КВr + Сl­ 2 = 2 КСl + Вr 2

Применение . Бром применяют для получения различных броморганических соединений, используемых в лакокрасочной и фармацевтической промышленности. Значительные количества брома расходуются для получения бромида серебра, используемого в качестве светочувствительного вещества при изготовлении кинофотоматериалов.

Бромоводород и бромоводородная кислота . Бромоводород - это бесцветный газ с резким запахом, переходящий при 66,8 С в жидкость, затвердевающую при 87 С. В 1 л воды при 0 "С растворяется около 500 л бромводорода.

Химические свойства бромводорода и его водного раствора -бромоводородной кислоты - аналогичны свойствам хлороводорода и соляной кислоты с той лишь разницей, что бромоводородная кислота является более сильной кислотой, а бромоводород - более сильным восстановителем.

Бромводород легко присоединяется по месту двойной или тройной связи непредельных углеводородов, образуя бромпроизводные соответствующих органических соединений:

СН 3 СН=СН 2 + НВr = СН 3 СНВrСН 3

Пропилен Изопропилбромид

Из-за легкой окисляемости бромводорода его нельзя получить действием концентрированной серной кислоты на бромиды щелочных металлов при нагревании, так как серная кислота окисляет бромиды

до свободного брома:

2 КBr + 2 Н 2 SO 4 = К 2 SO 4 + SO 2 + Вr 2 + 2 Н 2 О

Свободный от брома бромоводород получают взаимодействием трибромида фосфора с водой:

РВr 3 + 3 Н 2 О = Н 3 РО 3 + 3 НВr

Бромоводородная кислота используется для получения бромидов различных металлов, особенно бромида серебра, который используется в производстве светочувствительных кинофотоматериалов.

Большинство солей бромоводородной кислоты (б р о м и д о в) хорошо растворимо в воде. Нерастворимыми солями являются бромид серебра АgВr, бромид ртути (I) Нg 2 Вr 2 , бромид меди (I) СuВr и бромид свинца РbВr 2 .

Кислородные соединения брома аналогичны кислородным соединениям хлора, но кислоты являются более слабыми электролитами и более слабыми окислителями. Кроме бромата калия КВrО 3 , который применяется в аналитической химии и лабораторной практике, они практического значения не имеют.

68. Иод

Иод был открыт французским химиком-селитроваром Б. Куртуа в 1811 г.

Нахождение в природе . Соединения иода самостоятельных залежей не образуют, а встречаются в виде примесей к минералам хлора. Соли иода содержится в водах буровых скважин. Заметные количества иода входят в состав некоторых морских водорослей, вола которых может быть использована как сырье для получения этого элемента.

Физические свойства . Иод представляет собой твердое темно-серое кристаллическое вещество со слабым металлическим блеском. При медленном нагревании он легко возгоняется, образуя фиолетовые пары. При быстром нагревании иод при 114 С плавится, а при 183 С кипит. Он хорошо растворим в органических растворителях и водном растворе КI. В присутствии КI растворимость его в воде очень незначительна (при 20 С в 1 л воды растворяется 290 мг иода).

Химические свойства . По химическим свойствам иод похож на хлор и бром, однако менее активен. С водородом он реагирует только при нагревании, причем реакция протекает не до конца:

I 2 + Н 2 = 2 НI (иодовород)

При нагревании иод взаимодействует c фосфором:

2 Р+ 3I 2 = 2 РI 3 (иодид фосфора (III))

В присутствии воды, играющей роль катализатора, иод интенсивно, почти со взрывом, реагирует с алюминием:

2 Аl + 3I 2 = 2 АlI 3 (иодид алюминия)

С водой иод почти не реагирует, а со щелочью реагирует аналогично

хлору и брому:

I 2 + 2 КОН = КI + КIO 3 + Н 2 О

3I 2 + 6 КОН = 5 КI + КIO 3 + 3 Н 2 О

Иод обладает окислительными cвойcтвами, которые проявляет в присутствии сильных воccтанователей. Он легко взаимодействует c сернистой кислотой и сероводородом:

Н 2 SO 3 + I 2 + Н 2 О = Н 2 SО 4 + 2 НI

Н 2 S + I 2 = 2 НI + S

При взаимодействии иода с тиосульфатом образуется не сульфат, как

в случае с хлором или бромом, а тетратионат:

I 2 + 2 Nа 2 S 2 O 3 = 2 NаI + Nа 2 S 4 О 6

Эта реакция используется в аналитической химии. Метод анализа, основанный на ее применении, называется иодометрическим. Окончание реакции определяют по появлению или исчезновению синей окраски, которая обусловлена взаимодействием иода с крахмалом.

Получение . В лаборатории иод можно получить аналогично получению хлора или брома действием иодоводородной кислоты на различные окислители (КМnО 4 , МnО 2 , КСlO 3 , КВrО 3 и даже FеСl 3 и СuSO 4):

2 КМnО 4 + 16 НI = 2 КI + 2 MnI 2 + 5I 2 + 8 Н 2 О

КВrО 3 + 6 НI = КВr + 5 I 2 + 3 Н 2 О

2 FеC 3 + 2 НI = 2 FeCl 2 + I 2 + 2 НСl

2 СuSO 4 + 4 НI = 2 СuI + 2 Н 2 SO 4 + I 2

В промышленности иод получают действием хлора на иодиды:

2 КI + СI 2 = 2 КCl + I 2

Применение . Иод применяют в лабораторной практике и медицине. Он входит в состав многих фармацевтических препаратов, а в качестве 5 %ного водно-спиртового раствора используется для обработки ран. Недостаток иода в организме приводит к серьезным заболеваниям (зоб).

Иодоводород и иодоводородная кислота . Иодоводород - это бесцветный, с резким запахом газ, который при 35,4 С превращается в жидкость, а при 50,8 С затвердевает. В 1 л воды растворяется около 500 л иодоводорода, образуя иодоводородную кислоту. Среди бескислородных кислот это наиболее сильная кислота. Она значительно сильнее соляной и даже бромоводородной кислот.

Иодоводородная кислота - очень сильный восстановитель, поэтому окисляется даже кислородом воздуха, вследствие чего раствор ее окрашивается в бурый цвет:

4 НI + O 2 = 2 Н 2 О + 2 I 2

На свету окисление проходит более энергично, чем в темноте, поэтому растворы иодоводородной кислоты хранят в темной стеклянной посуде.

Большинство солей иодоводородной кислоты - и о д и д о в -хорошо растворимо в воде. Нерастворимыми солями иодоводородной

кислоты являются иодид серебра АgI, иодид ртути (I) Нg 2 I 2 , иодид меди (I) СuI и иодид свинца РbI 2 .

Иодоводород получают действием воды на фосфортрииодид:

РI 3 + 3 Н 2 О = Н 3 РО 3 + 3 HI

Получить Иодоводород действием серной кислоты на иодиды щелочных металлов невозможно, так как почти весь иодид окисляется концентрированной серной кислотой до свободного иода:

2 КI + 2 Н 2 SO 4 = К 2 SО 4 + SO 2 + I 2 + 2 Н 2 О

8 КI + 4 Н 2 SO 4 = 3 К 2 SO 4 + К 2 S + 4I 2 + 4 Н 2 О

Иодоводородная кислота применяется только в лабораторной практике.

Кислородные соединения иода аналогичны кислородным соединениям брома. Слабые кислоты НIO, НIO 3 и НIO 4 являются также слабыми окислителями. Они находят применение только в лабораторной практике.

69. Фтор

В свободном состоянии фтор впервые получен французским химиком А. Муассаном в 1886 г.

Нахождение в природе . Из солей фтора наиболее распространен в природе флюорит (плавиковый шпат) СаF 2 . Фтор в виде фторида кальция входит также в состав апатита. 3Са 3 (РО 4 } 2 · СаF 2 (или Са 5 (РО 4) 3 F).

Физические свойства . В обычных условиях фтор представляет собой бесцветный, обладающий резким запахом газ, который в толстых слоях окрашен в зеленовато-желтый цвет. При 181,1 С фтор переходит в жидкое состояние, а при 219,6 С затвердевает. Растворимость фтора не изучена, так как он разрушает почти все растворители.

Химические свойства. На внешнем электронном слое атома фтора находится 7 электронов (s 2 р 5). Так как этот слой расположен ближе к ядру, чем у атомов хлора, брома и иода, фтор сильнее всех галогенов притягивает электроны. Этим объясняется его исключительно высокая химическая активность. Фтор не имеет d-уровня, поэтому не может иметь более одного неспаренного электрона и проявлять другие валентные состояния, кроме единицы.

Фтор взаимодействует почти со всеми элементами, причем реакции протекают более энергично, чем с хлором или кислородом. На поверхности некоторых металлов (Рb, Сu, Ni, Мg) образуется плотная пленка фторида, которая препятствует дальнейшему прохождении реакции.

Неметаллы в порошкообразном состоянии реагируют со фтором очень энергично, а в компактном - значительно труднее. Углерод в виде сажи сгорает в атмосфере фтора мгновенно, а графит реагирует со фтором только при высокой температуре. С кислородом и азотом фтор непосредственно не взаимодействует.

Получение . Свободный фтор из-за высокой реакционной способности выделить очень непросто. Получают его в небольших количествах электролизом расплава дифторида калия КF·НF в свинцовой аппаратуре (образовавшийся на внутренней поверхности стенок электролизера фторид свинца РbF 2 лредохраняет аппарат от разрушения).

Применение . Свободный фтор применяют для получении фторпроизводных органических соединений, которые используются как сырье для производства фторопластов (тефлон), высокотемпературных смазочных масел и жидкостей для холодильных машин (фреонов).

Фтороводород, плавиковая кислота . Фтороводород - газ с резким запахом. При 19,9 С он переходит в жидкое состояние, а при 83,1 С затвердевает. Жидкий фтороводород смешивается с водой в любых соотношениях, Раствор фтороводорода в воде называется фтороводородной или плавиковой кислотой. В отличие от других галогеноводородных кислот плавиковая кислота относится к слабым кислотам. Она хорошо реагирует со многими металлами, основными оксидами, основаниями и солями. В присутствии сильных кислот в ней растворяются многие редкие металлы, которые в других кислотах не растворяются (титан, цирконий, ниобий, тантал и др.). Плавиковая кислота образует со многими металлами очень прочные комплексные фториды: Н 3 FеF 6 , Н 2 ТiF 6 , Н 3 АlF 6 . Натриевая соль Nа 3 АlF 6 , даже в расплаве диссоциирует c образованием иона АlF 6 3  . Фтороводород и плавиковая кислота реагируют с диоксидом кремния с образованием летучего соединения SiF 4:

SiO 2 + 4 НF = SiF 4 + 2 Н 2 О

Так как в состав стекла входит значительное количество диоксида кремния, плавиковая кислота разъедает стекло, поэтому хранить ее можно в посуде, изготовленной из полимерных материалов (полиэтилена, фторопласта или эбонита), или в стеклянной, покрытой изнутри слоем парафина.

Фтороводород применяется для получения фторорганических соединений, в производстве фторопластов, металлургии редких металлов, а также как травильный агент при обработке поверхности некоторых металлов.

Получают фтороводород действием концентрированной серной кислоты на плавиковый шпат СаF 2:

СаF 2 + Н 2 SO 4 = СаSO 4 + 2 НF

Фтороводород образуется также как побочный продукт при переработке апатитов,

70. Марганец

Марганец впервые получили К. В. Шееле и Ю. Ган в 1774 г.

Нахождение в природе . По распространению в природе марганец занимает место после железа. Содержание его в земной коре составляет 0,1 %. Основным минералом, в виде которого марганец встречается в рудах, является пиролюзит МnО 2 . Кроме пиролюзитовых марганцевых руд встречаются марганцевые руды, содержащие браунит Mn 2 О 3 , манганит МпО(ОН), гаусманит Мn 3 O 4 и марганцевый шпат МnCO 3 . Кроме того, марганец в виде оксидов содержится почти во всех железных рудах.

Физические свойства . Марганец - серебристо-белый металл, плотность его 7,2 г/см 3 . Он твердый и хрупкий, при 1260 С плавится, а при 2120 С закипает. На воздухе металл покрывается пестрыми пятнами оксидной пленки, которая предохраняет его от дальнейшего окисления. С железом марганец образует сплавы с любым соотношением компонентов (ферромарганец).

Химические свойства . Марганец образует различные соединения, в которых проявляет степень окисления +2, +3, +4, +6 и +7. Соединения марганца с другими степенями окисления малохарактерны и встречаются очень редко.

При взаимодействии металлического марганца а различными неметаллами образуются соединения марганца (II):

Мn + С 2 = МпСl 2 (хлорид марганца (II))

Мn + S = МnS (cулъфид марганца {II))

3 Мn + 2 Р = Мn 3 Р 2 (фосфид марганца (II))

3 Мn + N 2 = Мn 3 N 2 (нитрид марганца (II))

2 Мn + N 2 = Мn 2 Si (силицид марганца (II))

Марганец легко растворяется в кислотах-неокислителях с выделением водорода:

Мn + 2 НСl = МnСl 2 + Н 2

Мn + Н 2 SO 4 (разб.) = МnSO 4 + Н 2

Он растворяется также в воде в присутствии соединений, дающих при гидролизе кислую реакцию:

Мn + 2 Н 2 О + 2 NН 4 Сl = МnСl 2 + 2 NН 4 ОН + Н 2

Растворение марганца в кислотах-окислителях сопровождается выделением продуктов восстановления этих кислот:

Мn + 2 Н 2 SO 4 (конц.) = МnSO 4 + SO 2 + 2 Н 2 О

Мn + 4 НNО 3 (конц.) = Мn(NО 3) 2 + 2 NО + 2 Н 2 О

3 Мn + 8 НNОз (разб.) = 3 Мn(NО 3) 2 + 2 NО 2 + 4 H 2 О

Марганец может восстанавливать многие оксиды металлов и по этому используется в металлургии:

5 Мn + Nb 2 О 5 = 5 MnО + 2 Nb

3 Мn + Fе 2 О 3 = 3 МnО + 2 Fе

В мелкодисперсном состоянии (порошок) марганец более реакционноспособен, чем в компактном.

Получение . Металлический марганец получают восстановлением его прокаленных оксидов алюминием. Так как алюминий очень бурно реагирует с диоксидом марганца, используют прокаленный пиролюзит. При прокаливании пиролюзита образуется оксид марганца Мn 3 O 4 , который с алюминием реагирует более спокойно:

3 МnО 2 = Мn 3 O 4 + O 2

3 Мn 3 О 4 + 8 Аl = 4 Аl 2 O 3  9 Мn

Для получения ферромарганца, используемого в металлургии, смесь железной руды и пиролюзита восстанавливают коксом в электропечах:

Fе 2 О 3 + МnО 2 + 5 С = 2Fе·Мn + 5 СО

Применение . Марганец в виде ферромарганца используют в черной металлургии.

Кислородные соединения марганца . Марганец образует оксиды МnО, Мn 2 О 3 , МпО 2 , МпО 3 , Мп 2 О 7 , гидроксиды Мn(ОН) 2 , Mn(ОН) 4 , Н 2 МnО 4 , НМnО 4 и соответствующие им соединения.

Монооксид марганца МnО - это порошок зеленовато-серого цвета, обладающий основными свойствами и поэтому реагируюший с кислотами и кислотными оксидами:

МnО + 2 НCl = МnСl 2 + H 2 О

МnО + SO 3 = MnSO 4

В воде монооксид марганца практически нерастворим.

Гидроксид марганца (II) Мn(ОН) 2 - белое вещество, которое легко окисляется на воздухе до бурого гидроксида марганца (IV):

2 Мn(ОH) 2 + O 2 + 2 Н 2 О = 2 Мn(ОН) 4

Образуется гидроксид марганца (II) при взаимодействии его солей со щелочами:

МnSО 4 + 2 КОН = Мn(ОН) 2  + К 2 SО 4

Гидроксид марганца (II) обладает основными свойствами. Он реагирует с кислотами и кислотными оксидами:

Мn(ОН) 2 + 2 НСl = МnСl 2 + 2 Н 2 О

Мn(ОН) 2 + SО 3 = МnSО 4 + Н 2 О

Гидроксид марганца (II) обладает восстановительными свойствами. В присутствии сильных окислителей он может окисляться до перманганата:

2 Мп(ОН) 2 + 5 КВгО + 2 КОН = 2 КМnO 4 + 5 КВг + 3 Н 2 О

При недостаточном количестве окислителя образуется диоксид марганца:

5 Мn(ОН) 2 + КВrО = 5 МnО 2 + КВr + Н 2 О

Большинство солей марганца (II) хорошо растворимо в воде. В сухом виде их кристаллогидраты окрашены в слабо-розовый цвет. Нерастворимыми солями марганца (II) являются карбонат МnСО 3 , сульфид МnS и фосфат Мn 3 (РО 4) 2 . При действии сильных окислителей в кислой среде марганец (II) в зависимости от количества окислителя может переходить в МnО 2 , или перманганат:

Мn(NО 3) 2 + РbО 2 = МnО 2 + Рb(NО 3) 2

2 Мn(NО 3) 2 + 5 РbО 2 + 6 НNО 3 = 2 НМnО 4 + 5 Рb(NО 3) 2 + 2 Н 2 О

Оксид марганца (III) Мn 2 О 3 встречается в природе в виде минерала браунита. В лаборатории образуется при осторожном нагревании МnО 2 при температуре 530-940 С:

4 МnО 2 = 2 Мn 2 О 3 + O 2

При более высокой температуре разложение диоксида сопровождается образованием оксида Мn 3 O 4 .

3 МnО 2 = Мn 3 О 4 + O 2

Соединения марганца (III) практического значения не имеют,

Диоксид марганца МnО 2 или оксид марганца (IV), вещество темно - серого цвета. При нагревании на воздухе до 530 "С диоксид марганца разлагается, выделяя кислород, как показано выше. В вакууме или в присутствии восстановителя эта реакция протекает значительно интенсивнее.

При кипячении диоксида марганца с концентрированной азотной кислотой образуется соль марганца (II) и выделяется кислород:

2 МnО 2 + 4 НNО 3 = 2 Мn(NО 3) 2 + 2 Н 2 О + O 2

Диоксид марганца в кислой среде проявляет окислительные свойства:

МnО 2 + 4 НСl = МnСl 2 + Сl 2  + 2 Н 2 О

МnО 2 + 2 FеSO 4 + 2 Н 2 SO 4 = МnSO 4 + Fе 2 (SO 4) 3 + 3 Н 2 О

При сплавили оксида марганца (IV) со щелочами без доступа воздуха образуется манганит, или манганат (IV):

2 МnО 2 + 2 КОН = К 2 МnО 3 + Н 2 О

В присутствии кислорода воздуха, игравшего роль окислителя, при сплавлении образуется соль манганата (VI):

2 МпО 2 + 4 КОН + O 2 = 2 К 2 МnО 4 + 2 Н 2 О

Манганат калия К 2 МnO 4 самопроизвольно разлагается на перманганат калия и диоксид марганца:

3 К 2 МnО 4 + 2 Н 2 О = 2 КМnО 4 + МnО 2 + 4 КОН

Перманганат калия КМnO 4 широко применяется в лабораторной практике, промышленности, медицине и быту. Он является очень сильным окислителем. В зависимости от среды марганец в присутствии восстановителя может восстанавливаться до различной степени окисления. В кислой среде он всегда восстанавливается до Мn (II):

2 КМnО 4 +10 КВг + 8 Н 2 SO 4 = 2 МпSO 4 + 6 К 2 SO 4 + 5 Вr 2 + 8 Н 2 О

Аналогично ведут себя манганат калия К 2 МnО 4 и диоксид марганца.

В щелочной среде перманганат калия восстанавливается до манганата:

2 КМnО 4 + К 2 SO 3 + 2 КОН = К 2 SO 4 + 2 К 2 МnO 4 + Н 2 О

В нейтральной или слабощелочной среде перманганат калия восстанавливается до диоксида марганца:

2 КМnО 4 + С 6 Н 5 СН 3 = 2 КОН + 2 МnО 2 + С 6 Н 5 СООН

2 КМnО 4 + 3 МnSO 4 + 2 Н 2 О = 5 МnО 2 + К 2 SО 4 + 2 Н 2 SО 4

Последняя реакция используется в аналитической химии при количественном определении марганца.

Раньше перманганат калия получали окислением либо диоксида марганца, либо манганата калия. Диоксид марганца окисляли селитрой при сплавлении со щелочью:

МnО 2 + КNО 3 + 2 КОН = К 2 МпО 4 + КNО 2 + Н 2 О

Образовавшийся манганат калия в растворе самопроизвольно распадался на перманганат калия и диоксид марганца:

3 К 2 MnО 4 + 2 Н 2 О = 2 КМпО 4 + MnО 2 + 4 КОН

По второму способу манганат калия окисляли хлором:

2 К 2 МnО 4 + Сl 2 = 2 КМnО 4 + 2 КСl

В настоящее время перманганат калия получают электролитическим окислением манганата:

МnO 4 2   е  = МnO 4 

Перманганат калия широко применяется как в промышленности, так и в лабораторной практике. Его используют для отбелки хлопка, шерсти, прядильных волокон, осветления масел и окисления различных органических веществ. В лабораторной практике он применяется для получения хлора и кислорода:

2 КМnO 4 + 16 НСl = 2 КСl + 2 МnСl 2 + 5 Cl 2 + 8 Н 2 О

2 КМnО 4 = К 2 МnО 4 + МnО 2 + O ­2

В аналитической химии перманганат калия применяют для количественного определения веществ, обладающих восстановительными свойствами (Fе 2  , Sn 2  , АsО 3 3  , Н 2 О 2 , и др.). Этот метод анализа называется перманганатометрией.

Подгруппа галогенов

Лекция №3

План лекции

1. Общая характеристика подгруппы

2. Нахождение в природе. История получения фтора

3. Методы получения фтора

4. Физические и химические свойства фтора

5. Соединения фтора – фториды

6. Физические и химические свойства фтороводорода

7. Кислородные соединения фтора

8. Применение фтора и его соединений

9. Нахождение в природе. Истрия получения хлора

10. Физические и химические свойства фтора

11. Соединения хлора – хлориды. Сравнительная характеристика галогенводородов

12. Кислородные соединения хлора

13. Применение хлора и его соединений. Биологическая роль хлора.

14. Нахождение в природе. История получения брома, йода

15. Физические и химические свойства брома и йода

16. Соединения брома и йода

17. Применение брома и йода

К элементам VII (17) группы главной подгруппы относятся: фтор F, хлор Cl, бром Br, йод I, астат At.

В основном состоянии атомы галогенов имеют электронную конфигурацию внешнего энергетического уровня – …ns 2 np 5 , где n – главное квантовое число (номер периода). Для атомов галогенов характерны следующие степени окисления: для фтора – (–1, 0); для хлора – (–1, 0, +1, +3, (+4), +5, (+6), +7); для брома – (–1, 0, +1, +3, (+4), +5, +7); для астата – (–1, 0, +5).

В табл. 1 представлены основные свойства VII (17) группы главной подгруппы.

Свойство F Cl Br I At
Заряд ядра
Электронная конфигурация внешнего энергетического уровня в основном состоянии …2s 2 2p 5 …3s 2 3p 5 …4s 2 4p 5 …5s 2 5p 5 …6s 2 6p 5
Орбитальный радиус, пм
Энергия ионизации , эВ 17,46 13,01 11,82 10,30 9,2
Энергия сродства к электрону, , эВ 3,45 3,61 3,37 3,08
Электроотрицательность: по Полингу по Оллреду-Рохову 4,00 4,10 3,20 2,83 3,00 2,48 2,70 2,21 2,20 1,96
Температура плавления, ºС –220,6 –100,9 –7,2 +113,5 +298
Температура кипения, ºС –187,7 –34,2 +58,8 +184,5 +411
Дина связи, пм
Е связи, кДж/моль

В VII группе главной подгруппе сверху вниз эффективный заряд ядра увеличивается, орбитальный радиус также увеличивается, энергия ионизации уменьшается, восстановительные свойства атомов возрастают. Для атомов галогенов характерны высокие значения энергии ионизации, поэтому восстановительные свойства для них малохарактерны.



В VII группе главной подгруппе сверху вниз эффективный заряд ядра увеличивается, орбитальный радиус увеличивается, энергия сродства к электрону уменьшается, окислительные свойства атомов уменьшаются.

Атом фтора не имеет свободных d-орбиталей, валентные электроны атома фтора (... 2s 2 2p 5) слабо экранированы от действия ядра, что объясняет небольшой радиус атома фтора и высокие значения энергии ионизации и электроотрицательности. Энергия сродства к электрону у атома фтора меньше, чем у атома хлора. Это связано с небольшим радиусом атома фтора и сильным межэлектронным отталкиванием при присоединении электрона к атому.

В VII группе главной подгруппе сверху вниз энергия ионизации уменьшается, энергия сродства к электрону уменьшается, электроотрицательность уменьшается.

В газообразном, жидком и твердом состоянии молекулы галогенов двухатомны Г 2 . Данные вещества имеют молекулярную кристаллическую решетку, и как следствие этого низкие температуры кипения и плавления.

В VII группе главной подгруппе сверху вниз температуры плавления и кипения возрастают. Для веществ с молекулярной кристаллической решеткой температуры плавления и кипения зависят от величины энергии межмолекулярного взаимодействия. Так как молекулы галогенов неполярны, поэтому для них энергия межмолекулярного взаимодействия зависит только от величины поляризуемости. Поляризуемость возрастает от F 2 к Cl 2 вследствие увеличения длины химической связи и общего числа электронов.

В свободном виде все галогены окрашены: F 2 – бледно-зеленый газ, Cl 2 – желто-зеленого цвета газ; Br 2 – красно-бурая жидкость; I 2 – твердое вещество серо-фиолетового цвета; At – серое вещество с металлическим блеском.

Р-ЭЛЕМЕНТЫ

НОРМАТИВНОЕ РЕГУЛИРОВАНИЕ БУХГАЛТЕРСКОГО УЧЕТА В РФ

Система нормативного регулирования бухгалтерского учета в России состоит из документов четырех уровней.

Первый уровень системы нормативного регулирования бухгал­терского учета составляют законы и иные законодательные акты: Гражданский кодекс Российской Федерации (приняты Государ­ственной Думой - часть 1 от 21.10.95, часть 2 от 01.03.96), Феде­ральный закон от 21.11.96 № 129-ФЗ «О бухгалтерском учете», Положение по ведению бухгалтерского учета и бухгалтерской от­четности в Российской Федерации от 29.07.98 № 34н.

Второй уровень системы нормативного регулирования бухгал­терского учета составляют положения (стандарты) по бухгалтерскому учету. В этих документах обобщены принципы и базовые пра­вила бухгалтерского учета, изложены основные понятия, относя­щиеся к отдельным участкам учета.

Третий уровень системы нормативов регулирования бухгалтерс­кого учета определяется документами, в которых возможные бух­галтерские приемы приведены с примерами раскрытия конкрет­ного механизма применения их к определенному виду деятельно­сти. К ним относятся методические указания по ведению бухгал­терского учета, в т.ч. в инструкциях, рекомендациях и т.п.

Четвертый уровень в системе нормативного регулирования бух­галтерского учета занимают рабочие документы (документы внут­ренней регламентации) организации, формирующие ее учетную политику в методическом, техническом и организационном ас­пектах.

Фтор, хлор, бром, йод и астат носят общее название галогенов (“солерождающие”). Атомы галогенов имеют на внешнем энергетическом уровне по 7 электронов и их общая электронная конфигурация ns 2 np 5 .

Исходя из физических констант атомов можно сделать следующие выводы:

n Кажущиеся радиусы нейтральных атомов правильно растут с увеличением числа квантовых слоев, т.е. в сторону повышения порядкового номера элемента.

n Величина ОЭО уменьшается с увеличением кажущихся радиусов нейтральных атомов, следовательно, окислительные свойства уменьшаются, а восстановительные повышаются у нейтральных атомов.

n С увеличением порядковых номеров элементов наблюдается постепенное ослабление неметаллических свойств и усиление металлических свойств.

Наличие 7 электронов на внешнем энергетическом уровне характеризует способность галогенов проявлять отрицательную степень окисления 1- и все галогены способны образовывать однозарядные отрицательные ионы. Склонность к образованию отрицательно заряженных ионов в ряду галогенов от фтора к иоду ослабевает. Невозможность возбудить спаренные электроны фтора (отсутствие во втором квантовом уровне вакантной d-орбитали) объясняет тот факт, что фтор проявляет постоянную степень окисления 1-. У других атомов галогенов можно возбудить последовательно спаренные электроны на вакантные d-орбитали. И для них характерно проявление степеней окисления 1+,3+,5+,7+ (у астата нет +7).



РАСПРОСТРАНЕННОСТЬ В ПРИРОДЕ

Среди галогенов самым распространенным является хлор (0,19%) и фтор(0,03%). Хлор и бром концентрируются в водах океанов, морей и соляных озер.

Бром, йод и астат – рассеянные элементы, своих минералов не образуют. Йода в природе меньше, чем урана германия лютеция и других элементов. В свободном виде галогены в природе не встречаются. Основные минералы, содержащие фтор: флюорит CaF 2 (плавиковый шпат), Na 3 криолит и фторапатит 3Ca 3 (PO 4) 2 Ca(F,Cl) 2 . Хлор входит в состав таких важных минералов как галит NaCl, сильвин KCl, карналлит KCl MgCl 2 6H 2 O.

Астат – один из самых редких на Земле элементов. В поверхностном слое земной коры толщиной 1,6 км содержится около 70 мг астата. Астат – от греческого астатос (неустойчивый).

Фтор содержится в организме животных и человека (кости, зубная эмаль), из растений наиболее богаты фтором лук и чечевица.

Бром - в виде солей K ,Na, Mg в морской воде, в воде некоторых озер (Сакское в Крыму) и буровых нефтяных водах.

Йод - зола водорослей служит исходным сырьем для получения йода.

10446 0

В 17 группу входят F, Cl, Br, I, At (табл. 1 и 2). Слово галоген («гало» + «ген») означает «образующий соль». Все элементы — неметаллы. Во внешней оболочке имеют 7 электронов. Из-за высокой электроотрицательности и реакционной способности в свободном виде в природе не встречаются. Благодаря легкому присоединению электрона образуют галогенид-ионы, поэтому существуют в форме двухатомных молекул. Атомы в молекулах связаны ковалентной связью в результате обобществления пары электронов, по одному от атома. Молекулы галогенов удерживаются вместе слабыми вандерваальсовыми силами, что объясняет их высокую летучесть.

Таблица 1 . Некоторые физические и химические свойства металлов 17 группы


Название

Относит, ат. масса

Электронная формула

Радиус, пм

Основные изотопы (%)

Фтор Fluorine [от лат. fluere — течь]

ковалентный 58

Хлор Chlorine [от греч. chloros — зеленоватый]

ковалентный 99

Бром Bromine [от греч. bromos — зловоние]

3d 10 4s 2 4p 5

Ковалентный 114,2

79 Вг* (50,69)

Йод Iodine [от греч. iodes — фиолетовый]

4d 10 5s 2 5p 5

Ковалентный 133

Астат Astatine [от греч. Astatos — неустойчивый]

4f 14 5d 10 6s 2 6p 5

Все галогены токсичны, имеют характерные резкий запах и окраску, интенсивность которой возрастает к нижней части группы. Эта группа состоит из наиболее реакционноспособных элементов Периодической системы. Атомные и ионные радиусы галогенов, а также длины связи в молекулах возрастают к нижней части группы в Периодической системе. Напротив, энергии диссоциации связи и ее прочность при этом уменьшаются, за исключением фтора.

Галогениды щелочных металлов (1 группа) являются соединениями ионного типа. У галогенидов щелочноземельных металлов (2 группа), кроме ионных, встречаются соединения частично ковалентного типа. При перемещении слева направо вдоль периода галогениды элементов становятся более ковалентными. Ковалентный характер галогенидов возрастает также при перемещении по группе вниз. При этом, если металл может существовать в нескольких состояниях окисления, то его связь с галогенидом в низшем из них имеет ионный характер, а в высшем — ковалентный. Как ионные, так и ковалентные галогениды двухвалентных металлов, как правило, кристаллизуются в слоистые решетки. Исключением является СиСl 2 , имеющий полимерное строение. Галогенид-ионы являются лигандами во многих комплексных ионах, вытесняя при этом менее сильные лиганды, например, воду.

Галогениды серебра неустойчивы на солнечном свету, разлагаясь на металл и галоген. Это свойство использовано в черно-белой фотографии. Наиболее светочувствительными оказались бромиды Ag . Широкое применение имеют галогеноводороды, являющиеся одними из самых известных сильных кислот. Кислотность их водных растворов увеличивается к нижней части группы. Исключением является фтороводород. Его водный раствор (плавиковая кислота ) имеет небольшую кислотность, благодаря прочности связи Н - F и малой константе диссоциации кислоты.

Таблица 2. Содержание в организме, токсическая (ТД) и летальная дозы (ЛД) металлов 17 группы


В земной коре (%)

В океане (%)

В человеческом организме

Среднее (при массе тела 70 кг)

Кровь (мг/л)

ТД - 20 мг, ЛД - 2 г

Токсичен

ТД - 3 г, ЛД - >35 г

(0,43-0,58)x10 -5

(0,05-5) х10 -5

ТД - 2 мг, ЛД - 35-350 г

Следы в некоторых минералах

Токсичен из-за радиоактивности

Фтор (F) — по распространенности занимает 13 место среди элементов земной коры, наиболее реакционноспособный элемент, наиболее мощный из промышленно получаемых окислителей. В газообразном виде имеет бледно-желтый цвет. В промышленности используют его органические соединения, полимеры и все соли, особенно CaF 2 — в качестве флюса в металлургии, и AlF 3 — при производстве Аl . Большие количества F 2 производили в атомной промышленности для получения UF 6 в процессах обогащения ядерного топлива.

Близкое расположение атомов в молекуле F приводит к сильному отталкиванию между несвязывающими электронами, что объясняет ослабление связи в молекуле. Поэтому фтор в элементном состоянии в форме F 2 не встречается, но присутствует в виде фторид-иона в криолите Na 3 AlF 6 и плавиковом шпате (флюорите ) CaF 2 .

F всегда имеет степень окисления -1. Малый ковалентный радиус позволяет ему образовывать соединения с высокими координационными числами; например, SF 6 существует, a SJ 6 образоваться не может. В ионах фторидов металлов небольшой размер иона F - обусловливает высокие значения энтальпий решетки и термодинамическую стабильность.

Вследствие высокой окислительной способности фтора галогены могут реагировать между собой, образуя межгалогенные соединения («интергалогениды») ClF, ClF 3 , BrF 5 , IF 7 , в которых степень окисления других галогенов изменяется от +1 до +7.

После инкубации печени крыс с NaF поглощенный фтор концентрируется в митохондриях и ядрах гепатоцитов. Костной тканью (зубы, кости, хрящи) он поглощается в 3 раза активней, чем кровью. Выводится F в основном почками. Токсическое действие фторид-ионов связано с тем, что они связывают и тем самым инактивируют ионы-активаторы ферментных систем Са 2+ , Mg 2+ с образованием малорастворимых фторидов. Комплексные ионы PF - , BF 4 - , SiF 6 2- , вследствие прочности ковалентных связей в их молекулах, биологически неактивны. F - ингибирует металлопротеины.

Хлор (Сl) — в природе встречается преимущественно в виде каменной соли NaCl . Из нее электролизом получают Сl 2 — тяжелый желто-зеленый газ с резким запахом. В промышленности его используют в качестве отбеливающего агента и при производстве хлорорганических растворителей и полимеров. Кроме того, его широко применяют для стерилизации воды на водопроводных станциях в концентрациях (0,6-6)х10 -5 моль/кг. Однако при загрязнении воды органическими азотсодержащими веществами хлорирование воды опасно, поскольку атомы Сl могут замещать атомы Н в молекулах алканов и алкенов в фотолитических реакциях, то есть при облучении видимым светом с длиной волны 200-800 нм. При этом образуются хлорорганические токсичные соединения — производные диоксина , в частности, высокоядовитый 2,3,7,8-тетрахлордибензо-n -диоксин (рис. 1). «Диоксинами» в целом называют полихлорированные дибензо-и-диоксины. Все они даже в очень низких концентрациях резко снижают иммунитет человека к вирусным инфекциям и влияют на генетический аппарат.

Рис. 1. Диоксины (2,3,7,8-тетрахлордибензо-п-диоксин)

Соединения с O 2 (хлорноватистая НСlO , соли «гипохлориты»; хлористая НСlO 2 , соли «хлориты»; хлорноватая HСlO 3 , соли «хлораты»; хлорная НСlO 4 кислоты, соли «перхлораты», а также их анионы и оксиды) являются окислителями; их применяют в качестве дезинфицирующих средств.

Содержание хлора в тканях млекопитающих близко к его содержанию в морской воде. Хлорид-ионы Сl - почти равномерно распределяются в организме живых существ в заметных количествах (от 70 до 103 ммоль/л). Их выделение осуществляется почками. Жидкий хлор вызывает серьезные ожоги кожи, а газообразный — сильно раздражает глаза и легкие, образуя с тканевой жидкостью соляную и хлорноватистую кислоты. В легких при этом может развиться пневмония.

Бром (Вr) — густая темно-красная жидкость с резким запахом и тяжелыми парами коричневого цвета. Это единственный неметалл, находящийся в жидком состоянии при комнатной температуре. Его используют в составе добавок к топливу, как ингибитор горения в огнестойких материалах, в красках и пестицидах, в фотографии. Биологическая роль изучена слабо, хотя Вr 2 ядовит. Соотношение Br/Cl в крови равно примерно 0,01, причем Вr - содержится в основном в плазме. Сопутствует хлору в процессах обмена веществ, выводится с мочой.

Йод (I) — твердый черный блестящий неметалл. Легко возгоняется. Применяется в качестве дезинфицирующего спиртового раствора, в пищевых добавках, красителях, катализаторах, в фотографии. Относится к биологически необходимым («эссенциальным») элементам, входит в состав тиреоид-ных гормонов. Его дефицит считают фактором, предрасполагающим к развитию рака щитовидной и молочной желез.

I избирательно накапливается в щитовидной железе (более 80%). Йодид I - , поступивший в организм, быстро концентрируется в железе, где его концентрация выше, чем в крови, в 25-500 раз. В щитовидной железе йодид окисляется до йода, который под влиянием специфичного фермента йодирует ароматические кольца тирозина в молекулах тиреоглобулина с образованием липофильных гормонов роста — тироксина , йодтиронина , трийодтиронина . Йод в концентрации 5x10 -5 М разобщает окислительное фосфорилирование в митохондриях, легко образует нерастворимые хелаты с двухзарядными ионами металлов, особенно с Mg 2+ и Мп 2+ . Деятельность щитовидной железы активируется йодсодержащим тиреотропным гормоном гипофиза .

Недостаток йода в пище человека приводит к гипотиреозу и базедовой болезни (зобу). Йод в заметных количествах содержится в составе морской капусты (бурых водорослей рода Laminaria ) в виде моно- и дийодтирозина, а также моно- и дийодтиронина, что позволяет использовать эти водоросли при заболеваниях щитовидной железы в качестве природного источника готовых предшественников гормона роста.

В биогеохимических провинциях с недостатком йода его соли добавляют в пищевую соль, однако это не приносит положительных результатов. Установлено, что значительно эффективнее с дефицитом йода можно бороться добавлением природных йодсодержащих продуктов, в частности, морской капусты, в пищевые продукты, например, в хлеб. Раньше йод извлекали из золы бурых водорослей, в настоящее время — из нефти и солевых источников. Отметим, что один из ключевых ферментов обмена йода (дейодиназа ), обеспечивающий гомеостаз тироксина, относится к селенопротеинам. Следовательно, борьба с йоддефицитом на фоне дефицита Se бессмысленна, а с учетом механизма обратных связей — вредна.

Астат (At) — радиоактивный неметалл, получаемый при нейтронной бомбардировке изотопа 209 Bi . Из-за малого времени полураспада почти не изучен.

Медицинская бионеорганика. Г.К. Барашков


Close