Нервная система человека и позвоночных животных имеет единый план строения и представлена центральной частью – головным и спинным мозгом, а также периферическим отделом – отходят от центральных органов нервами, что представляют собой отростки нервных клеток – нейронов.

Их совокупность образует нервную ткань, главными функциями которой являются возбудимость и проводимость. Эти ее свойства объясняются прежде всего особенностями строения оболочек нейронов и их отростков, состоящих из вещества, называемого миелином. В данной статье мы рассмотрим строение и функции этого соединения, а также выясним возможные способы его восстановления.

Почему нейроцити и их отростки покрыты миелином

Совсем не случайно дендриты и аксоны имеют защитный слой, состоящий из белково-липидных комплексов. Дело в том, что нарушение является биофизическим процессом, в основе которого лежат слабые электрические импульсы. Если электрический ток идет по проводу, то последний должен быть покрыт изоляционным материалом, чтобы уменьшить рассеивание электрических импульсов и не допустить снижение силы тока. Такие же функции в нервном волокне выполняет миелиновая оболочка. Кроме того, она является опорой, а также обеспечивает питание волокна.

Химический состав миелина

Как и большинство клеточных мембран, он имеет липопротеидную природу. Причем содержание жиров здесь очень высокая – до 75%, а белков – до 25%. Миелин в незначительном количестве содержит также гликолипиди и гликопротеиди. Химический состав его различается в спинномозговых и черепно-мозговых нервах.

В первых наблюдается высокое содержание фосфолипидов – до 45%, а остальное приходится на холестерин и цереброзиди. Демиелинизация (то есть замена миелина на другие вещества в нервных отростках) приводит к таких тяжелых аутоиммунных заболеваний, как, например, рассеянный склероз.

С химической точки зрения, этот процесс будет выглядеть так: миелиновая оболочка нервных волокон меняет свою структуру, что проявляется прежде всего в уменьшении процентного содержания липидов по отношению к белкам. Далее снижается количество холестерина и возрастает содержание воды. А все это приводит к постепенной замене миелина, содержащего олигодендроциты или шванновские клетки макрофаги, астроциты и межклеточную жидкость. Результатом таких биохимических изменений будет резкое снижение способности аксонов проводить возбуждение вплоть до полного блокирования прохождения нервных импульсов.

Особенности нейроглиальних клеток

Как мы уже говорили, миелиновая оболочка дендритов и аксонов образованная специальными структурами, которые характеризуются низкой степенью проницаемости для ионов натрия и кальция, а потому имеют только потенциалы покоя (они не могут проводить нервные импульсы и выполняют электроизоляционные функции). Данные структуры называются глиальными клетками. К ним относятся:

  • олигодендроциты;
  • волокнистые астроциты;
  • клетки епендими;
  • плазматические астроциты.

Все они формируются из наружного слоя зародыша – эктодермы и имеют общее название – макроглия. Глия симпатических, и парасимпатических соматических нервов представлена шванновскими клетками (нейролеммоцитами).

Строение и функции олигодендроцитов

Они входят в состав центральной нервной системы и являются клетками макроглии. Так как миелин – это белково-липидная структура, она способствует увеличению скорости проведения возбуждения. Сами клетки образуют электроизолирующий слой нервных окончаний в головном и спинном мозге, формируясь уже в период внутриутробного развития. Их отростки обертывают в складки своей внешней плазмалеммы нейроны, а также дендриты и аксоны. Получается, что миелин – это основной электроизолирующий материал, который разграничивает нервные отростки смешанных нервов.

Шванновские клетки и их особенности

Миелиновая оболочка нервов периферической системы образована нейролеммоцитами (шванновскими клетками). Их отличительная особенность заключается в том, что они способны образовывать защитную оболочку только одного аксона, и не могут формировать отростки, как это присуще олигодендроцитам. Между шванновскими клетками на расстоянии 1-2 мм располагаются участки, лишенные миелина, так называемые перехваты Ранвье. За ним скачкообразно происходит проведение электрических импульсов в пределах аксона. Леммоцити способны к репарации нервных волокон, а также выполняют трофическую функцию. В результате генетических аберраций клетки оболочки леммоцитов начинают неконтролируемое митотическое деление и рост, в результате чего в разных отделах нервной системы развиваются опухоли – шванномы (невриномы).

Роль микроглии в разрушение миелиновой структуры

Микроглия представляет собой макрофаги, способные к фагоцитозу и умеют распознавать различные патогенные частицы – антигены. Благодаря мембранных рецепторов эти глиальные клетки вырабатывают ферменты – протеазы, а также цитокины, например, интерлейкин 1. Он является медиатором воспалительного процесса и иммунитета. Миелиновая оболочка, функции которой заключаются в изоляции осевого цилиндра и улучшение проведения нервного импульса, может повреждаться интерлейкином. В результате этого, нерв «обнажается» и скорость проведения возбуждения резко снижается.

Более того, цитокины, активируя рецепторы, провоцируют избыточный транспорт ионов кальция в тело нейрона. Протеазы и фосфолипазы начинают расщеплять органеллы и отростки нервных клеток, что приводит к апоптозу – гибели данной структуры. Она разрушается, распадаясь на частицы, которые и пожирают макрофаги. Это явление называется ексайтотоксичностью. Оно вызывает дегенерацию нейронов и их окончаний, приводя к таким заболеваниям, как болезнь Альцгеймера и болезнь Паркинсона.

Мякотные нервные волокна

Если отростки нейронов – дендриты и аксоны, покрывает миелиновая оболочка, то они называются мякотними и иннервируют скелетную мускулатуру, входя в соматический отдел периферической нервной системы. Немиелинизированние волокна образуют вегетативную нервную систему и иннервируют внутренние органы.

Мякотные отростки имеют больший диаметр, чем безмякотние, и формируются следующим образом: аксоны прогибают плазматическую мембрану клеток глии и формируют линейные мезаксони. Затем они увеличиваются и шванновские клетки многократно обворачиваются вокруг аксона, образуя концентрические слои. Цитоплазма и ядро леммоцита перемещаются в область внешнего слоя, который называется неврилеммой или шванновской оболочкой. Внутренний слой леммоцита состоит из слоистого мезоксона и называется миелиновой оболочкой. Толщина ее в различных участках нерва неодинакова.

Как восстановить миелиновую оболочку

Рассматривая роль микроглии в процессе демиелинизации нервов, мы установили, что под действием макрофагов и нейромедиаторов (например, интерлейкинов) происходит разрушение миелина, что в свою очередь приводит к ухудшению питания нейронов и нарушение передачи нервных импульсов по аксонам. Данная патология провоцирует возникновение нейродегенеративных явлений: ухудшение когнитивных процессов, прежде всего памяти и мышления, появление нарушения координации движений тела и тонкой моторики.

В итоге возможна полная инвалидизация больного, которая возникает в результате аутоиммунных заболеваний. Поэтому вопрос о том, как восстановить миелин, в настоящее время стоит особенно остро. К числу таких способов относится прежде всего сбалансированная белково-липидная диета, правильный образ жизни, отсутствие вредных привычек. В тяжелых случаях заболеваний применяют медикаментозное лечение, восстанавливающее количество зрелых глиальных клеток – олигодендроцитов.

Дата публикации: 26.05.17

Показано, что регенерация миелина не только защищает здоровые нейроны, но и позволяет вернуть к работе повреждённые нервные клетки. Статью об этом можно найти в научном журнале eLife.

В основе такого заболевания как рассеянный склероз лежит «атака» оболочек нейронов собственными иммунными клетками. Из-за этого утрачивается способность нейронов передавать нервные импульсы. Миелиновый слой, который покрывает длинные отростки нейронов, в данном случае выступает в роли «проводов», по которым «бежит» нервный импульс. Его разрушение замедляет прохождение импульса в 5-10 раз и приводит к слепоте, нарушениям чувствительности, параличам, когнитивным расстройствам и прочим неврологическим проблемам.

Учёные использовали модель рассеянного склероза у мышей, при которой здоровым мышам делают инъекцию белка, содержащегося в миелиновой оболочке, инициируя таким образом аутоиммунный ответ организма, то есть заставляя иммунитет «ополчиться» на собственные же ткани. Новый эксперимент опирался на предыдущее исследование, в котором эта же группа учёных обнаружила кластеры мускариновых рецепторов, которые помогают миелину восстанавливаться из олигодендроцитов (глиальных клеток-«помощников» в головном мозге). Также взяли во внимание и положительный эффект у пациентов с отёком зрительного нерва на приём блокатора гистамина под названием «клемастин».

В нынешней работе исследователи применили клемастин совместно с белком, вызывающим рассеянный склероз у мышей, и показали, что у таких животных проявлялось значительно меньше симптомов заболевания, потому что происходило восстановление миелиновой оболочки аксонов нейронов спинного и головного мозга.

Демиелинизированные участки спинного мозга мышей, которым вводили клемастин, и группы сравнения. Зелёным цветом показаны олигодендроциты, красным - Т-клетки, макрофаги и микроглия. Источник: Chan et al./eLife

«Камнем преткновения» в исследовании оказалось то, что клемастин действует одновременно на разные виды рецепторов и клеток, поэтому учёным еще предстояло доказать связь между влиянием клемастина на олигодендроциты и ослаблением симптомов рассеянного склероза. Для этого они поочерёдно «выключали» по одному рецептору у мышей и наблюдали за эффектом лекарства. В итоге обнаружен мускариновый рецептор 1 типа, который и выступает в качестве мишени для клемастина и замедляет развитие олигодендроцитов из клеток-предшественников.

Дальше произошло самое интересное. Попытка выключить ген этого рецептора привела к тому, что поражённые рассеянным склерозом нейроны стали восстанавливать свою функцию. Таким образом, учёные доказали, что М1 рецептор олигодендроцитов замедляет эффект ремиелинизации нейронов. К сожалению, на данный момент не существует вещества, которое избирательно бы блокировало М1 рецептор, но калифорнийские исследователи заявили о том, что собираются его создать и протестировать на животных, а также, возможно, на людях.

«Сейчас мы показали, что можно запустить процессы восстановления и стабильность нового миелина во время периода воспаления. Сейчас мы уже можем сказать пациентам с рассеянным склерозом, что фокусировка на ремиелинизацию в будущем не только поможет восстановить потерянные функции, но и улучшить их качество жизни», - говорит один из авторов Йонах Чан (Jonah Chan) из Калифорнийского университета.

Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery by Feng Mei, Klaus Lehmann-Horn, Yun-An A Shen, Kelsey A Rankin, Karin J Stebbins, Jonah R Chan et al. in eLife. Published online September 2016 doi:10.7554/eLife.18246

Миелиновые оболочки поддаются восстановлению?

Миелиновые оболочки - оболочки,покрывающие аксоны нейронов.Ее образуют глиальные клетки,оболочки формируются из их плоского выроста тела и оборачивает аксон,как скотч.Если миелиновая оболочка повреждена,она не способна предавать нервам сигнал,что приводит к проблемам с памятью.Восстановить миелиновую оболочку возможно с помощью витамина В12,С, D ,фолиевой кислоты,незаменимых жирных кислот(омега 3) ,с помощью специальной диеты,в которой присутствует авокадо,льняное семя,фасоль,грецкий орех,рыбий жир,зеленый чай.Такая аминокислота,как холин,тоже может способствовать восстановлению миелиновых оболочек,его можно найти в яйцах,бобах,орехах,говядине.Витамин В1 находится в шпинате,свинине,рисе, В5 - в тунце и йогурте.Нужна также и медь,ее можно найти в тыквенных семенах, кунжуте,горьком шоколаде,миндале.

Для восстановления миелинового слоя нервных волокон необходим лецитин.Приблизительно 30%миелина центральной нервной системы состоит из лецитина.Изолирующие и защитные ткани окружающие головной мозг,позвоночник и километры нервов на 66%состоят из лецитина.Роль лецитина в организме очень велика-он участвует во многих биохимических процессах организма.При его нехватке не усваиваются жирорастворимые витамины.И еще для миелинового слоя крайне необходим кальций.Вот эти два продукта вам совершенно необходимы.

Особенности профилактики рассеянного склероза. Восстановление миелина

Рассеянный склероз характеризуется патологическими изменениями в функционировании нервной системы, при которых поражаются отдела спинного или головного мозга. Симптомами болезни становятся различные невралгические проявления.

Стоит ли бояться этой болезни? Чаще всего рассеянный склероз диагностируется у пациентов в возрастелет. Чтобы избежать данного недуга, специалисты рекомендует придерживаться одного из методов, предусматривающего правильный образ жизни, исключающий эмоциональное перенапряжение.

Профилактика

Так как в настоящее время конкретизировать истинные причины рассеянного склероза не удалось, профилактика недуга сводится к несложным рекомендациям, выполнение которых под силу каждому.

Отказ от алкоголя и курения

Вредные привычки, особенно алкоголь и курение, вызывают регулярное раздражение клеток нервной системы. В мягких тканях накапливаются канцерогены, происходит сужение сосудов, что усложняет и ускоряет патогенные процессы. Отказ от вредных пристрастий сохранит иммунитет и снизит риск заболевания в 2 раза.

Как справляться со стрессами и физическими переутомлениями?

Чтобы контролировать стресс и снимать накопившуюся усталость, следует научиться управлять своим психологическим состоянием. Сделать это можно с помощью следующих советов:

  1. Постарайтесь выполнять все задачи до конца. Планируя дела на завтрашний день, не нужно ставить для себя сверхзадачи. Лучше вы сделаете два наиболее важных дела, чем не закончите сразу 10 планируемых вещей. Чувство выполнения целей способно уменьшить стрессовое состояние.
  2. Чаще применяйте релаксацию или медитацию. При стрессе рекомендуется лечь на ровную поверхность, включить спокойную музыку или специальные аудиозаписи, обучающие снятию стресса.
  3. Занимайтесь любимым делом. Постарайтесь направить плохие мысли в иное русло. Для этого можно переключиться на любимое хобби, например, посмотреть хороший фильм, заняться вязанием, чтением книги с хорошим сюжетом.
  4. Не забывайте совершать прогулки по свежему воздуху и обязательно общайтесь с близкими вам людьми.

Диета и рациональное питание

  • Правильное питание должно включать достаточное количество чистой воды, а также, полезного в данном случае, зеленого чая.
  • Пищу следует принимать по 3 раза в день большими порциями, либо до 5 раз в сутки небольшими порциями.
  • Не рекомендуется включать в рацион продукты с высоким содержанием жира. Лучше потреблять больше клетчатки, способствующей предотвращению диабета и сердечно-сосудистых заболеваний.
  • Обязательно насыщайте организм витаминами, минералами и полезными веществами.
  • При рассеянном склерозе пользуется популярностью диета Эштона Эмбри. Он советует исключить из рациона белки, молочные продукты, злаковые и бобовые культуры. Полезными продуктами, по его мнению, становятся куриная грудка, рыба, овощи (кроме картофеля), крупы без глютена и орехи.

Посмотреть видео о питании при рассеянном склерозе:

Активный образ жизни

Предотвратить диагноз рассеянного склероза помогут регулярные физические нагрузки на организм. Для этого нужно подобрать комплекс простых и понятных в исполнении, упражнений, которые нормализуют кровообращение, повышают мышечный тонус и способствуют бодрому настроению. При необходимости, нужно сбросить лишние кг и привести вес в норму.

С чего начать профилактику?

Первоначально следует выполнять несколько простых правил, а именно:

  • Избегать инфекционных заболеваний.
  • Всячески способствовать повышению иммунитета.
  • Тщательно следить за питанием.
  • Вести здоровый образ жизни.
  • Не забывать об отдыхе и массаже.

Полезные упражнения для предотвращения болезни

Познакомьтесь с некоторыми примерами упражнений по лечебной физкультуре, которые разработаны для предотвращения РС:

  1. Сидя на стуле, положите руки на пояс. Далее нужно одновременно отвести в сторону правую руку и левую ногу. Потом наоборот. И так 4 раза.
  2. Сидя на стуле, согнуть руки в локтях. Следует вращать кистями разные стороны по 4 круга 3 раза.
  3. Лежа на спине, положите кисти под голову, а ноги согните в коленях. Поднимать и опускать таз 6 раз.

Посмотреть видео о лечебной физкультуре при рассеянном склерозе:

Польза йоги и плавания

Аутоиммунные болезни часто сопровождаются глубокой усталостью организма. Йога в этом случае, способствует расслаблению, отдыху, накоплению жизненных сил и энергии. Для выполнения йоги используется такой инвентарь, как валики, кирпичи, веревки. Лучше всего проконсультироваться с тренером, чтобы он подобрал индивидуальную программу упражнений.

При РС полезно также плавание в воде комфортной температуры. Можно включить в занятия в бассейне специальную водную гимнастику, укрепляющую организм и снимающую нервное напряжение.

Реабилитация

При РС нарушается связь между клетками головного мозга и тела. Полному лечению это заболевание не подлежит, но симптомами недуга можно руководить.

При небольшом расстройстве поможет дополнительный отдых. В случае, если симптомы тяжелые, следует обратиться к врачу. Обычно, в таких случаях, назначают плазмафильтрацию, кортикостероиды внутривенно в больших дозах, и другие медикаменты.

Обязательно следует выполнять лечебную физкультуру по 30 минут в день минимум, а также соблюдать диету. Уменьшают симптомы болезни продукты, богатые омега кислотами.

Можно ли вернуться к полноценной жизни?

Несмотря на опасность заболевания, многие люди могут жить полноценной жизнью после рассеянного склероза. Для этого следует вести активный образ жизни, посещать спортивные мероприятия, хорошо высыпаться, правильно питаться здоровой пищей, не перетруждать себя нагрузками.

Миелин

Что такое?

Миелином называют вещество, которое образует мякотную оболочку, отвечающую за электроизоляцию нервных волокон, а также, за скорость передачи электрического импульса. Простыми словами, это основная составляющая в работе нервной системы человека.

Можно ли поврежденные нервы вернуть к норме?

Заболевания, которые связаны с разрушениями миелиновой оболочки, подвергаются лечению. Однако, процесс это сложный. Восстановление миелина направлено на купирование симптомов и дальнейшую остановку разрушения. Чем раньше произведена диагностика, тем проще будет восстановить поврежденные нервы.

Что нужно для этого?

Как восстановить миелиновую оболочку? Современное лечение дает возможность это сделать, но нет гарантий, что новая миелиновая оболочка станет функционировать не хуже прежней.

Есть риск того, что болезнь может перетекать в хроническую форму, с сохранением симптомов. Однако, даже небольшая ремиелинизация может остановить прогрессирование болезни и частично вернуть некоторые функции. Регенерация миелина проводится современными лекарственными препаратами, стоимость которых достаточно высокая.

Лечение

Очагами рассеянного склероза могут стать пирамидальная система головного мозга, а также стволовая, мозжечковая, оптическая, спинальная. Могут нарушаться зрительные и вестибулярные функции.

Лечение состоит из плазмофореза, а также применения синтетических:

Посмотреть видео о том, как лечится рассеянный склероз:

Заключение

Для профилактики заболевания рассеянного склероза, а также для предотвращения его рецидива, необходимо как-можно больше отдыхать. За питанием нужен особый контроль – пища не должна быть жирной, а в продукта должны присутствовать витамины. Старайтесь не допускать стрессов, ведь они плохо влияют на работу нервной системы. Окружите себя комфортной обстановкой, и обязательно живите только с позитивными мыслями.

Фармацевтическое средство для лечения демиелинизирующих заболеваний нервной системы, средство, способствующее восстановлению миелиновой оболочки нервного волокна, и способ лечения демиелинизирующих заболеваний нервной системы

Владельцы патента RU:

Изобретение относится к медицине и фармакологии и представляет собой средство для лечения демиелинизирующих заболеваний нервной системы, содержащее стефаглабрина сульфат, который способствует восстановлению миелиновой оболочки нервного волокна, применение его и способ лечения. Изобретение обеспечивает повышение эффективности лечебного действия средства, возможность применения его в низких дозах, уменьшение числа побочных эффектов, ускорение и повышение эффективности лечения демиелинизирующих заболеваний нервной системы. 3 н. и 2 з.п. ф-лы.

Изобретение относится к области фармакологии и касается фармацевтических средств, используемых при лечении неврологических заболеваний, в частности демиелинизирующих заболеваний нервной системы, и может быть использовано при лечении деструктивных и дегенеративно-дистрофических заболеваний, например, таких как острые и хронические полирадикулоневропатии, полиневропатии с блоком проведения дисметаболических и токсических невропатий, невропатий и невралгий черепно-мозговых нервов, туннельных невропатий и т.п.

Основными функциональными элементами нервной системы являются нервные клетки или нейроны, составляющие 10-15% общего числа клеточных элементов в нервной системе. Остальную, большую ее часть ее занимают клетки нейроглии.

Функция нейронов заключается в восприятии сигналов от рецепторов или других нервных клеток, хранении и переработке информации и передаче нервных импульсов к другим клеткам - нервным, мышечным или секреторным. Составляющие основную массу нервной ткани глиальные элементы выполняют вспомогательные функции и заполняют почти все пространство между нейронами. Анатомически среди них различают клетки нейроглии в мозге (олигодендроциты и астроциты) и шванновские клетки в периферической нервной системе. Олигодендроциты и шванновские клетки формируют вокруг аксонов (отростков нервной клетки) миелиновые оболочки.

Миелин - особый вид клеточной мембраны, окружающей отростки нервных клеток, в основном аксоны, в центральной и периферической нервной системах. По химическому составу миелин - это липопротеидная мембрана, состоящая из биомолекулярного липидного слоя, расположенного между мономолекулярными слоями белков, спирально закрученная вокруг интернодального сегмента нервного волокна. Основные функции миелина: метаболическая изоляция и ускорение проведения нервного импульса, а также опорная и барьерная функции.

Заболевания, одним из основных проявлений которых является деструкция нервных волокон и разрушение миелина, в настоящее время являются одной из наиболее актуальных проблем клинической медицины, преимущественно неврологии. В последние годы наблюдается отчетливое увеличение числа случаев заболеваний, сопровождающихся повреждением миелина.

Разрушение миелина может быть связано с биохимическими дефектами его строения, которые, как правило, являются генетически детерминированными или обусловленными повреждением нормально синтезированного миелина под влиянием различных воздействий.

Разрушение миелина является универсальным механизмом реакции нервной ткани на ее повреждение. Нервные болезни, связанные с деструкцией миелина, можно разделить на две основные группы - миелинопатии и миелинокластии. Большинство миелинопатий связано с наследственными заболеваниями, приводящими к генетически обсловленным биохимическим дефектам строения миелина. В основе миелинокластических заболеваний лежит разрушение нормально синтезированного миелина под влиянием различных воздействий, как внешних, так и внутренних. Подразделение рассматриваемых заболеваний на эти две группы весьма условно, так как первые клинические проявления миелинопатий могут быть связаны с воздействием различных внешних факторов, а миелинокластии вероятнее всего развиваются у предрасположенных лиц.

Примером наследственных миелинопатий могут служить адренолейкодистрофии (АЛД), которые связаны с недостаточностью функции коры надпочечников и характеризуются активной диффузной демиелинизацией различных отделов как центральной, так и периферической нервной системы.

Основной метаболический дефект при этом заболевании - увеличение содержания в тканях насыщенных жирных кислот с длинной цепью (особенно С-26), что приводит к грубым нарушениям структуры и функций миелина. Клинические проявления: нарастающая слабость в ногах, нарушение чувствительности по полиневротическому типу («носки» и «перчатки»), нарушения координации. Эффективного специфического лечения АЛД в настоящее время не существует, поэтому проводится симптоматическая терапия.

Описана поздняя форма суданофильной лейкодистрофии Пелицеуса-Мерцбахера с началом заболевания на втором десятилетии жизни. Выраженное демиелинизирующее поражение головного мозга у этих больных сопровождается снижением содержания эфиров холестерина. У этих больных прогрессивно нарастают нарушения координации, спастические парезы, интеллектуальные нарушения.

Группа лейкодистрофии характеризуется демиелинизацией с диффузной волокнистой дегенерацией белого вещества головного мозга и образованием в ткани мозга глобоидных клеток. Среди них особого интереса заслуживает болезнь Александера - редкое заболевание, преимущественно наследуемое по аутосомно-рецессивному типу. Эта дисмиелинопатия характеризуется тем, что в миелине вместо галактолипидов и цереброзидов накапливаются глюколипиды. Для нее характерны постепенно нарастающие спастические параличи, снижение остроты зрения и деменция, эпилептический синдром, гидроцефалия.

К группе глобоидо-клеточных лейкодистрофий относятся и такие редкие заболевания, как болезнь Краббе и болезнь Канавана. Эти заболевания редко развиваются во взрослом возрасте. Клинически они характеризуются прогрессирующим поражением миелина разных отделов ЦНС с развитием парезов, нарушений координации, деменции, слепоты, эпилептическим синдромом.

Среди миелинокластических заболеваний особого внимания заслуживают вирусные инфекции, в патогенезе которых важную роль играет разрушение миелина. Это в первую очередь нейроСПИД, вызываемый вирусом иммунодефицита человека (ВИЧ), и связанные с ним поражения нервной системы, а также тропический спинальный парапарез (ТСП), вызываемый ретровирусом HTLV-I.

Патогенез первичного поражения ЦНС при указанных вирусных заболеваниях связан с непосредственным нейротоксическим воздействием вирусов, а также с патологическим действием цитотоксических Т-клеток, антител и нейротоксических веществ, вырабатываемых инфицированными иммуноцитами. Прямое поражение мозга при ВИЧ-инфекции приводит к развитию подострого энцефалита с участками демиелинизации.

Лечение всех вирусных инфекций основано на использовании противовирусных препаратов, останавливающих размножение вируса в инфицированных клетках.

У лиц с кахексией, страдающих хроническим алкоголизмом, тяжелыми хроническими заболеваниями печени и почек, при диабетическом кетоацидозе, во время проведения реанимационных мероприятий может развиваться тяжелое демиелинизирующее заболевание - острый или подострый центральный понтийный и/или экстрапонтийный миелинолиз. При этом заболевании симметричные билатеральные очаги демиелинизации образуются в подкорковых узлах и стволе головного мозга. Предполагается, что основой этого процесса является нарушение баланса электролитов, в первую очередь ионов Na. Особенно высок риск развития миелинолиза при быстрой коррекции гипонатрийемии. Клинически этот синдром может проявляться как минимальными неврологическими симптомами, так и тяжелыми альтернирующими синдромами и развитием комы. Заболевание обычно через несколько недель заканчивается смертью, но в ряде случаев массивные дозы кортикостероидов предотвращают летальный исход.

После химио- и лучевой терапии может развиваться токсическая лейкоэнцефалопатия с очаговой демиелинизацией в сочетании с мультифокальным некрозом. Возможно развитие острых, ранних отсроченных и поздних демиелинизирующих процессов. Последние начинаются через несколько месяцев или лет после облучения и характеризуются тяжелым течением с полиморфной очаговой неврологической симптоматикой. В патогенезе этих заболеваний существенное значение имеют аутоиммунные реакции на антигены миелина, повреждение олигодендроцитов и, следовательно, нарушение процессов ремиелинизации. Токсическое повреждение миелина может наблюдаться также при порфирии, гипотиреозе, интоксикациях ртутью, свинцом, СО, цианидами, при всех видах кахексии, передозировке антиконвульсантов, изониазида, актиномицина, при героиновой и морфиновой наркоманиях.

Особого внимания заслуживает ряд миелинокластических заболеваний, которые могут рассматриваться как особые варианты рассеянного склероза.

Концентрический склероз, или болезнь Балло, является неуклонно прогрессирующим демиелинизирующим заболеванием лиц молодого возраста. При этом заболевании образуются большие очаги демиелинизации преимущественно в белом веществе лобных долей, иногда с вовлечением серого вещества. Очаги состоят из чередующихся областей полной и частичной демиелинизации с выраженным ранним поражением олигодендроцитов.

Следует отметить, что очаги демиелинизации в ЦНС довольно часто выявляются у больных с системной красной волчанкой, первичным синдромом Шегрена с васкулитами различного генеза и другими системными аутоиммунными заболеваниями. Разрушение миелина и развитие аутоиммунных реакций на его компоненты наблюдается при многих сосудистых и паранеопластических процессах в ЦНС (Е.И.Гусев, А.Н.Бойко. Демиелинизирующие заболевания центральной нервной системы, Consilium-Medicum, Том 2, N2, 2000).

Лечение, направленное на замедление или остановку прогрессирования заболеваний, сопровождающихся демиелинизацией, в основном основано на представлениях о них как аутоиммунных заболеваниях. Аутоиммунный процесс сопровождается появлением миелинотоксических антител и Т-лимфоцитов-киллеров, разрушающих шванновские клетки и миелин. Для коррекции иммунной системы применяют иммуносупрессоры, снижающие активность иммунной системы, и иммуномодуляторы, изменяющие соотношение компонентов иммунной системы. Иммуносупрессия и иммуномодуляция направлены на разрушение, удаление или изменение функции лимфоцитов, способных повреждать миелин.

Среди методов, влияющих на аутоиммунные механизмы заболевания, предпочтение отдается плазмаферезу, внутривенному введению человеческого IgG и применению кортикостероидов (Невропатии. Под редакцией Н.М.Жулева, Санкт-Петербург, 2005 г.).

Однако плазмаферез может быть осуществлен только в больничных условиях, и его применение у пациентов, сохранивших способность к самостоятельному перемещению, не всегда является оправданным.

Противопоказаниями для назначения IgG являются наличие анафилактических реакций, сердечная и почечная недостаточность. Осложнения отмечаются примерно у 10% пациентов.

При назначении кортикостероидной терапии учитывается наличие общеизвестных противопоказаний (язвенная болезнь желудка и двенадцатиперстной кишки, высокая артериальная гипертензия, диабет и др.), и должны применяться средства, предупреждающие развитие наиболее частых осложнений (препараты калия, аскорбиновая кислота, рутин и т.п.).

В литературе содержится упоминание о препарате неинтерфероновой природы - копаксоне (Сорахопе-Теуа) (международное название - глатирамера ацетат). Копаксон является уксусно-кислой солью синтетических полипептидов, образованных 4 природными аминокислотами: L-глутаминовой кислотой, L-аланином, L-тирозином и L-лизином и по химическому строению имеет элементы сходства с основным белком миелина. Относится к классу иммуномодуляторов и обладает способностью блокировать миелин-специфические аутоиммунные реакции, лежащие в основе разрушения миелиновой оболочки нервных волокон при рассеянном склерозе. Однако при клиническом применении препарата отмечены многочисленные побочные реакции (абсцессы и гематомы в месте введения, повышение артериального давления, спленомегалия, аллергические реакции, апафилаксия, артриты, головная боль, депрессия, судороги, бронхоспазм, импотенция, аменорея, гематурия и др.) (Хохлов А.П., Савченко Ю.Н. «Миелинопатии и демиелинизирующие заболевания», М., 1991 г.).

По данным литературы, известно применение препаратов из лекарственных растений, которые предупреждают развитие демиелинизации нейронов - это различные препараты подорожника, топинамбура, цикория, одуванчика, спорыша, пырея, тыквы, бессмертника, подорожника; полифитохол, полиспонин, сибектан, хитохол, хитолен, сирепар, тыквеол, тыквейнол, розоптин (Корсун В.Ф., Корсун Е.В. Лекарственные растения в лечении рассеянного склероза: Методическое пособие. - М.: «ИНФИТ». -2004).

Известен стефаглабрин сульфат (Stphaglabrini sulfas) - сульфат алкалоида стефарина, выделенного из клубней с корнями стефании гладкой - (Stephania glabra (Rob) Miers, сем. луносемянниковых (Menispermaceae)) многолетнего тропического травянистого растения семейства мениспермовых. Произрастает в субтропических и тропических горных районах Южного Китая, Японии, Бирмы, Вьетнама, Индии. В СССР были предприняты попытки интродукции данного растения в субтропиках Закавказья, однако они успеха не имели. Основная масса сырья импортируется из Индии. Известен также способ получения стефаглабрина из растительного сырья (авторское свидетельство СССР №315387, 1963 г.).

Известно получение линии Stephania glabra в суспензионной культуре, с высоким уровнем синтеза алкалоида стефарина. Культура in vitro Stephania glabra была получена в Институте лекарственных растений (ВИЛАР). Разработка системы селекции in vitro проводилась в ИФРе.

Лекарственный препарат стефаглабрина сульфат - сернокислая соль алкалоида стефарина - (C 18 H 19 O 3 N 2) 2 ·H 2 SO 4 относится к производным проапорфина.

Представляет собой белый кристаллический порошок с температурой плавления°С (в вакууме), хорошо растворимый в воде и водном спирте. Стефаглабрин сульфат угнетает активность истинной и ложной холинэстеразы, оказывает тонизирующее действие на гладкую мускулатуру и снижает артериальное давление. Малотоксичен.

Ранее было разрешено использование стефаглабрина сульфата в медицинской практике в качестве антихолиноэстеразного средства (авторское свидетельство СССР №315388, 1963 г.).

Дальнейшие исследования авторов показали, что стефаглабрин сульфат обладает специфической ингибирующей активностью на развитие соединительной ткани, предотвращая образование рубца при повреждении нерва, и может быть применен в качестве средства для лечения травматических и послеоперационных повреждений периферической нервной системы (патент СССР №, 1985 г.).

Неожиданным, подтвержденным в экспериментах, оказалось выявленное авторами свойство стефаглабрина сульфата стимулировать рост шванновских клеток и последующее образование миелина, по-видимому, под влиянием нейроростовых факторов, образующихся под действием препарата, что способствует восстановлению миелиновой оболочки нервного волокна и, таким образом, восстановлению его функционального состояния, нарушенного в результате поражения нервной системы (аксональной дегенерации, аутоиммунной сегментарной демиелинизации и первичной сегментарной демиелинизации).

Задачей настоящего изобретения является создание эффективного и с минимальными побочными эффектами фармацевтического средства для лечения деструктивных и демиелинизирующих заболеваний нервной системы, выявление нового применения стефаглабрина сульфата и создание способа лечения деструктивных и демиелинизирующих заболеваний нервной системы.

Для решения этой задачи авторами предложено фармацевтическое средство для лечения деструктивных и демиелинизирующих заболеваний нервной системы, содержащее стефаглабрин сульфат в качестве средства, способствующего восстановлению миелиновой оболочки нервного волокна, при этом содержание стефаглабрина сульфата в нем составляет от 0,2 до 1,0%; применение стефаглабрина сульфата при лечении деструктивных и демиелинизирующих заболеваний нервной системы в качестве средства, способствующего восстановлению миелиновой оболочки нервного волокна, и способ лечения деструктивных и демиелинизирующих заболеваний нервной системы, включающий симптоматическую терапию и электрофизиологические процедуры, при этом пациенту дополнительно назначают стефаглабрин сульфат в качестве ремиелинизирующего средства. Стефаглабрин сульфат вводят пациенту парентерально по 2-8 мл 0,25% раствора 2 раза в день. Курс лечения 20 дней.

Технический результат предложенной совокупности объектов заключается в высокой эффективности лечебного действия препарата при использовании его в низких дозах, уменьшении числа нежелательных побочных эффектов, а также в ускорении и повышении эффективности лечения деструктивных и демиелинизирующих заболеваний нервной системы.

В экспериментах на крысах было установлено, что под влиянием стефаглабрина сульфата в диапазоне наиболее оптимальных доз от 0,1 и до 1,0 мг/кг рано начинается миелинизация дегенерирующих нервов, идет значительно быстрее и полнее, заканчивается в более ранние сроки по сравнению с животными, не получавшими препарат.

Ксуткам у леченных стефаглабрином сульфатом крыс большинство нервных волокон в периферических концах нервов имело миелиновое покрытие и нормальное гистологическое строение. Проведенные электрофизиологические исследования показали полное восстановление скорости проведения импульса по нерву.

В то время как у контрольных животных, не получавших лечение стефаглабрином сульфатом, миелинизация нервных волокон проходила медленно и полностью не завершалась даже ксуткам.

Следующие примеры поясняют сущность изобретения, не ограничивая его.

Применение стефаглабрина сульфата внутримышечно по 2,0 мл 0,25% раствора 2 раза в сутки в течение 2-3 недель было эффективным при лечении больных миелопатией с элементами бокового амиотрофического синдрома. При этом отмечалось исчезновение фибрилляций, уменьшение выраженности амиотрофий и поликинетичности проприоцептивных рефлексов, нарастание мышечной силы в руках.

Препарат был эффективен у больных цереброспинальной формой рассеянного склероза с тетрапарезом, мозжечково-атактическим синдромом и тазовыми расстройствами.

Препарт применяли у 37 больных сирингомиелией. Положительный эффект отмечен у 28 больных: уменьшилась интенсивность болей вплоть до их исчезновения кдню применения препарата, восстанавливалась чувствительность на лице с появлением корнеальных рефлексов, ликвидировались расстройства глотания, а также отмечалось восстановление чувствительности (болевая и температурная) на туловище и конечностях.

Наилучший терапевтический эффект отмечен в группе больных, которым стефаглабрин сульфат вводили внутримышечно по 2 мл 2 раза в день (на курсампул). Наряду с применением препарата всем больным назначали массаж, лечебную физкультуру, ионизацию позвоночника с калия иодидом, витамины В 1 , В 12 . Следует отметить, что через 2-3 недели после начала лечения снижались границы чувствительных нарушений. Особого внимания заслуживает восстановление нарушенных функций у больных с начальными явлениями сирингобульбии. У ряда больных наблюдалось уменьшение интенсивности (вплоть до исчезновения) болей симпаталгического характера, которое наступало надень применения препарата.

Положительный терапевтический эффект был отмечен при применении стефаглабрина сульфата у 14 больных с тяжелым боковым амиотрофическим склерозом. В результате лечения у 12 больных отмечены нарастание силы в конечностях, уменьшение расстройства бульбарных функций - глотания и дыхания.

Так, у одного больного боковым амиотрофическим склерозом, сопровождающимся афонией, дисфагией, после инъекций стефаглабрина сульфата по 2 мл 2 раза в день в течение 10 дней заметно улучшилось глотание.

У другого больного восстановилось нарушенное дыхание, которое не поддавалось лечению другими препаратами.

1. Фармацевтическое средство для лечения демиелинизирующих заболеваний нервной системы, характеризующееся тем, что оно содержит стефаглабрина сульфат, способствующий восстановлению миелиновой оболочки нервного волокна.

2. Фармацевтическое средство по п.1, характеризующееся тем, что содержание стефаглабрина сульфата в нем составляет от 0,2 до 1,0%.

3. Применение стефаглабрина сульфата для получения средства, способствующего восстановлению миелиновой оболочки нервного волокна.

4. Способ лечения демиелинизирующих заболеваний нервной системы, включающий симптоматическую терапию и электрофизиологические процедуры, отличающийся тем, что пациенту дополнительно вводят 0,25%-ный раствор стефаглабрина сульфата парентерально.

5. Способ по п.4, отличающийся тем, что вводят стефаглабрин сульфат в количестве 2-8 мл 2 раза в день.

Миелиновая оболочка

Миелин (в некоторых изданиях употребляется некорректная теперь форма миэлин ) - вещество, образующее миелиновую оболочку нервных волокон.

Миелиновая оболочка - электроизолирующая оболочка, покрывающая аксоны многих нейронов. Миелиновую оболочку образуют глиальные клетки: в периферической нервной системе - Шванновские клетки, в центральной нервной системе - олигодендроциты . Миелиновая оболочка формируется из плоского выроста тела глиальной клетки, многократно оборачивающего аксон подобно изоляционной ленте. Цитоплазма в выросте практически отсутствует, в результате чего миелиновая оболочка представляет собой, по сути, множество слоев клеточной мембраны. Промежутки между изолированными участками называются перехваты Ранвье.

Из вышесказанного становится ясным, что миелин и миелиновая оболочка являются синонимами. Обычно термин миелин употребляется в биохимии, вообще при упоминании его молекулярной организации, а миелиновая оболочка - в морфологии и физиологии.

Химический состав и структура миелина, произведенного разными типами глиальных клеток, различны. Цвет миелинизированных нейронов - белый, отсюда название «белого вещества» мозга.

Приблизительно на 70-75 % миелин состоит из липидов , на 25-30 % - из белков . Такое высокое содержание липидов отличает миелин от других биологических мембран.

Молекулярная организация миелина

Уникальной особенностью миелина является его формирование в результате спирального обвития отростков глиальных клеток вокруг аксонов, настолько плотного, что между двумя слоями мембраны практически не остается цитоплазмы. Миелин представляет собой эту двойную мембрану, то есть состоит из липидного бислоя и белков, связанных с ним.

Среди белков миелина выделяют так называемые внутренние и внешние белки. Внутренние интегрированы в мембрану, внешние расположены поверхностно, и поэтому связаны с ней слабее. Миелин также содержит гликопротеиды и гликолипиды.

Белки составляют 25 - 30 % массы сухого вещества миелиновой оболочки нейронов ЦНС млекопитающих. На долю липидов приходится приблизительно 70-75 % от сухой массы. В миелине спинного мозга процент содержания липидов выше, чем в миелине головного. Большую часть липидов составляют фосфолипиды (43 %), остальное - холестерол и галактолипиды в примерно равном соотношении.

Миелинизация аксонов

В образовании миелиновой оболочки и структуре миелина ЦНС и периферической нервной системы имеются отличия.

Миелинизация в ЦНС

Миелинизация в периферической НС

Обеспечивается Шванновскими клетками. Каждая Шванновская клетка формирует спиральные пластинки миелина и отвечает лишь за отдельный участок миелиновой оболочки отдельного аксона. Цитоплазма шванновской клетки остается только на внутренней и наружной поверхностях миелиновой оболочки. Между изолирующими клетками также остаются перехваты Ранвье, которые здесь уже, чем в ЦНС.

Так называемые «немиелинизированные» волокна все равно изолированы, но по несколько иной схеме. Несколько аксонов частично погружены в изолирующую клетку, которая не смыкается вокруг них до конца.

См. также

  • Шванновские клетки

Ссылки

  • "Основной белок миелина" - статья в периодике «Вопросы медицинской химии» № 6 2000

Wikimedia Foundation . 2010 .

Смотреть что такое "Миелиновая оболочка" в других словарях:

    МИЕЛИНОВАЯ ОБОЛОЧКА, защитный слой, окружающий АКСОНЫ НЕРВНЫХ волокон периферической и центральной нервной системы. Волокно оказывается заключено как бы в капсулу, благодаря чему сохраняется проводимость и поток электрических импульсов,… … Научно-технический энциклопедический словарь

    - (от греч. myelos мозг), оболочка, окружающая отростки нервных клеток в мякотных волокнах. М. о. состоит из белого белково липидного комплекса миелина, в периферич. ЦНС образуется вследствие многократного обёртывания отростка шванновской клеткой… … Биологический энциклопедический словарь

    - (от греч. myelós мозг) мякотная оболочка, оболочка мякотного нервного волокна. Снаружи покрыта плазматической мембраной шванновской клетки (См. Шванновские клетки), изнутри граничит с поверхностной мембраной Аксона аксолеммой. Считается,… … Большая советская энциклопедия

    I. Эпителиальная Т. Плоский и призматический эпителий. Питание эпителиальной Т. Развитие эпителия. Железистый эпителий. II. Соединительная Т. 1) собственно соединительная Т.: а) эмбриональная, b) ретикулярная, с) волокнистая, d) эластическая, е)… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    НЕРВНЫЕ БОЛЕЗНИ - НЕРВНЫЕ БОЛЕЗНИ. Содержание: I. Классификация Н. б. и связь с б нями других органов и систем.......... 569 II. Статистика нервных болезней....... 574 III. Этиология................... 582 IV. Общие припципы диагностики Н. б..... 594 V.… … Большая медицинская энциклопедия

    Структура нейрона. Оранжевым цветом показана миелиновая оболочка Миелин (в некоторых изданиях употребляется некорректная теперь форма миэлин) вещество, образующее миелиновую оболочку нервных волокон. Миелиновая об … Википедия

Компонент

В миелине

В белом веществе

В сером веществе

Белки

Общ.фосфолипиды

Фофатидилсерин

Фосфатидилинозит

Холестерин

Сфингомиелин

Церебозиды

Плазмогены

ганглиозиды

Строение нервного волокна. Миелиновая оболочка

Из аксонов нейронов образуются нервные волокна . Каждое волокно состоит из осевого цилиндра (аксона), внутри которого находится аксоплазма с нейрофибриллами, митохондриями и синаптическими пузырьками.

В зависимости от строения оболочек, окутывающих аксоны, нервные волокна делят на: безмиелиновые (безмякотные) и миелиновые (мякотные).

1. Безмиелиновое волокно

Безмиелиновое волокно состоит из 7-12 тонких аксонов, которые проходят внутри тяжа, образованного цепочкой нейроглиальных клеток.

Безмиелиновые волокна имеют постганглионарные нервные волокна, входящие в состав вегетативной нервной системы.

2. Миелиновое волокно

Миелиновое волокно состоит из одного аксона, который окутан миелиновой оболочкой и окружен глиальными клетками.

Миелиновая оболочка образована плазматической мембраной Шванновской или олигодендроглиальной клетки, которая сложена вдвое и многократно обернута вокруг аксона. По длине аксона миелиновая оболочка образует короткие чехольчики - междоузлия , между которыми имеются немиелизированные участки – перехваты Ранвье.

Миелиновое волокно более совершенно, чем безмиелиновое, т.к. оно обладает более высокой скоростью передачи нервного импульса.

Миелиновые волокна имеют проводниковая система соматической нервной системы, преганглионарные волокна вегетативной нервной системы.

Молекулярная организация миелиновой оболочки (по Х.Хидену)

1-аксона; 2-миелин; 3-ось волокна; 4-белок (наружные слои); 5-липиды; 6-белок (внутренний слой); 7-холестерин; 8-цереброзид; 9- сфингомиелин; 10-фосфатидилсерин.

Химический состав миелина

Миелин содержит много липидов, мало цитоплазмы и белков. Мембрана миелиновой оболочки в расчете на сухую массу содержит 70% липидов (что в целом составляет около 65% всех липидов мозга) и 30% белков. 90% всех липидов миелина приходиться на холестерин, фосфолипиды и цереброзиды. Миелин содержит немного ганглиозидов.

Белковый состав миелина периферической и центральной нервной системы различен. Миелин ЦНС содержит три белка:

    Протеолипид, составляет 35 – 50% от общего содержания белка в миелине, имеет молекулярную массу 25кДа, растворим в органических растворителях;

    Основной белок А 1 , составляет 30% от общего содержания белка в миелине, имеет молекулярную массу 18кДа, растворим в слабых кислотах;

    Белки Вольфграма - несколько кислых белков большой массы растворимых в органических растворителях, функция которых неизвестна. Составляют 20% от общего содержания белка в миелине.

В миелине ПНС, протеолипид отсутствует, основной белок представлен белками А 1 (немного), Р 0 и Р 2 .

В миелине обнаружена ферментативная активность:

    холестеролэстеразы;

    фосфодиэстеразы, гидролизирующей цAMФ;

    протеинкиназы А, фосфорилирующей основной белок;

    сфингомиелиназы;

    карбоангидразы.

Миелин благодаря своему строению обладает более высокой стабильностью (устойчивостью к разложению), чем другие плазматических мембран.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В НЕРВНОЙ ТКАНИ

Энергетический обмен нервной ткани

Для мозга характерна высокая интенсивность энергетического обмена с преобладанием аэробных процессов. При массе 1400г (2% массы тела), он получает около 20% крови, выбрасываемой сердцем и приблизительно 30% всего кислорода, находящегося в артериальной крови.

Максимальный энергетический обмен в мозге наблюдается к периоду окончания миелинизации и завершения процессов дифференцировки у детей в возрасте 4 лет. При этом быстро растущая нервная ткань потребляет около 50% всего кислорода поступающего в организм.

Максимальная скорость дыхания обнаружена в коре больших полушарий, минимальная – в спинном мозге и периферических нервах. Нейронам свойственен аэробный обмен, тогда как метаболизм нейроглии адаптирован и к анаэробным условиям. Интенсивность дыхания серого вещества в 4 раза выше, чем белого.

В отличие от других органов, головной мозг практически не располагает запасами кислорода. Резервный кислород мозга расходуется в течение 10-12 секунд, что объясняет высокую чувствительность нервной системы к гипоксии.

Основным энергетическим субстратом нервной ткани является глюкоза, окисления которой обеспечивается ее энергией на 85-90%. Нервная ткань потребляет до 70% свободной глюкозы, выделяемой из печени в артериальную кровь. В физиологических условиях 85-90% глюкозы метаболизируется аэробным путем, а 10-15% - анаэробным.

В качестве дополнительных энергетических субстратов нейроны и глиальные клетки могут использовать аминокислоты , в первую очередь глутамат и аспартат.

В экстремальных состояниях нервная ткань переключается на кетоновые тела (до 50% всей энергии).

В ранний постнатальный период в мозге также окисляются свободные жирные кислоты и кетоновые тела .

Полученная энергия тратится в первую очередь:

    на создание мембранного потенциала , который используется для проведения нервных импульсов и активного транспорта;

    для работы цитоскелета , обеспечивающего аксональный транспорт, выделение нейромедиаторов, пространственной ориентации структурных единиц нейрона;

    для синтеза новых веществ , в первую очередь нейромедиаторов, нейропептидов, а также нуклеиновых кислот, белков, липидов;

    для обезвреживания аммиака .

Обмен углеводов нервной ткани

Нервная ткань характеризуется высоким углеводным обменом, в котором преобладает катаболизм глюкозы. Так как нервная ткань инсулиннезависима , с высокой активностью гексокиназы (имеет низкую константу Михаэлиса Ментона) и низкой концентрацией глюкозы, глюкоза поступает из крови в нервную ткань постоянно, даже если в крови мало глюкозы и отсутствует инсулин.

Активность ПФШ нервной ткани невелика. НАДФН 2 используется при синтезе нейромедиаторов, аминокислот, липидов, гликолипидов, компонентов нуклеиновых кислот и для работы антиоксидантной системы.

Высокая активность ПФШ наблюдается у детей в период миелинизации и при травмах головного мозга.

Обмен белков и аминокислот нервной ткани

Нервная ткань характеризуется высоким обменом аминокислот и белков.

Скорость синтеза и распада белков в разных отделах головного мозга неодинакова. Белки серого вещества больших полушарий и белки мозжечка отличаются высокой скоростью обновления, что связано с синтезом медиаторов, БАВ, специфических белков. Белое вещество, богатое проводниковыми структурам, обновляется особенно медленно.

Аминокислоты в нервной ткани используется как:

    источник «сырья» для синтеза белков, пептидов, некоторых липидов, ряда гормонов, витаминов, биогенных аминов и др. В сером веществе преобладает синтез БАВ, в белом – белков миелиновой оболочки.

    нейротрансмиттеры и нейромодуляторы. Аминокислоты и их производные участвуют в синаптической передаче (глу), в осуществлении межнейрональных связей.

    Источник энергии . Нервная ткань окисляет в ЦТК аминокислоты глутаминовой группы и аминокислоты с разветвленной боковой цепью (лейцин, изолейцин, валин).

    Для выведения азота . При возбуждение нервной системы возрастает образование аммиака (в первую очередь за счет дезаминирования АМФ), который связывается с глутаминовой кислотой с образованием глутамина. Реакцию с затратой АТФ катализирует глутаминсинтетаза.

Аминокислоты глутаминовой группы имеют самый активный метаболизм в нервной ткани.

N -ацетиласпарагиновая кислота (АцА) является частью внутриклеточного пула анионов и резервуаром ацетильных групп. Ацетильные группы экзогенной АцА служат источником углерода для синтеза жирных кислот в развивающемся мозге.

Ароматические аминокислоты имеют особое значение как предшественники катехоламинов и серотонина.

Метионин является источником метильных групп и на 80% используется для синтеза белка.

Цистатионин важен для синтеза сульфитидов и сульфатилрованных мукополисахаридов.

Обмен азота нервной ткани

Непосредственным источником аммиака в головном мозге служит непрямое дезаминирование аминокислот с участием глутаматдегидрогеназы, а так же дезаминирование с участием АМФ–ИМФ цикла.

Обезвреживание токсичного аммиака в нервной ткани происходит с участием α-кетоглутарата и глутамата.

Липидный обмен нервной ткани

Особенностью обмена липидов в мозге является то, что они не используются в качестве энергетического материала, а в основном идут на строительные нужды. Липидный обмен в целом невысокий и различается в белом и сером веществе.

В нейронах серого вещества из фосфоглицеридов наиболее интенсивно обновляются фосфотидилхолины и особенно фосфотидилинозитол, который является предшественником внутриклеточного посредника ИТФ.

Обмен липидов в миелиновых оболочках протекает медленно, очень медленно обновляются холестерин, цереброзиды и сфингомиелины. У новорожденных холестерин синтезируется в самой нервной ткани, у взрослых этот синтез резко снижается, вплоть до полного прекращения.

Системные повреждения периферических нервов (полиневропатии) и повреждения отдельных нервных стволов (невропатии) составляют большую группу заболеваний периферической нервной системы различной этиологии и сложного патогенеза, приводящих к разрушению нервных волокон или их оболочек. Распространенность патологических процессов, протекающих с повреждением периферических нервов настолько велика, что большая часть обращений пациентов к неврологу связана именно с ними.

Международная статистическая классификация болезней (МКБ-10) содержит огромный раздел (G 50 - 64), который включает в себя все многообразие клинических вариантов невропатий: от поражения отдельных нервов, корешков и сплетений до системных полиневропатий.

Повреждения периферических нервов может быть обусловлено обменными нарушениями, ишемией, заболеваниями крови, интоксикациями, алиментарными факторами, травмами, аллергическими реакциями, воспалительными процессами и другими причинами.

Страдания образований периферической нервной системы выступают как самостоятельное заболевание или клинический синдром и так часто встречаются в практике врача, что ни один специалист как терапевтического, так и хирургического профиля не может пройти мимо этой проблемы.

К периферической нервной системе относится задние и передние корешки спинного мозга, межпозвоночные спинальные ганглии, спинномозговые нервы, их сплетения, периферические нервы, а также корешки и ганглии черепных нервов и черепные нервы.

Формирование периферического нерва происходит следующим образом. Следуя на периферию из спинного мозга (или из полости черепа), спинальные нервы (или черепные нервы), состоящие из порций двигательных, чувствительных волокон, образуют периферический нерв. Периферические нервы являются в большинстве своем смешанными и состоят из двигательных волокон передних корешков (аксонов клеток передних рогов), чувствительных волокон (дендритов клеток межпозвонковых узлов) и вазомоторно-секреторно-трофических волокон (симпатических и парасимпатических) от соответствующих клеток серого вещества боковых рогов спинного мозга и ганглиев симпатического пограничного ствола.

Нервное волокно, входящее в состав периферического нерва, состоит из осевого цилиндра, расположенного в центре волокна, миелиновой оболочки, одевающей осевой цилиндр и швановской оболочки. Крупные нервные стволы состоят из 800 000 – 1 000 000 нервных волокон, которые обеспечивают значительный функциональный запас прочности периферической нервной системы. Считается, что функция нервного ствола нарушается только в случае гибели половины нервных волокон.

Миелиновая оболочка нервного волокна местами прерывается, образуя так называемые перехваты Равнье. Долгие годы считалось, что миелиновая оболочка обеспечивает роль электрического изолятора в процессе проведения возбуждения по нервному волокну. Однако, роль миелиновой оболочки, вероятно, более значительна – она принимает непосредственное участие в формировании электрического потенциала нервного волокна. Несомненно, ее участие в процессах обмена веществ нервной клетки чрезвычайно велико – функция нервного волокна нарушается при повреждении миелиновой оболочки. Соединительная ткань в периферических нервах представлена оболочками, одевающими нервный ствол (эпиневрий), отдельные его пучки (периневрий) и нервные волокна (эндоневрий). В оболочках проходят сосуды, питающие нерв. Миелиновая оболочка составляет основную массу периферического нерва.

Миелин – вещество, состоящее из холестерина, фосфолипидов и белков – результат фолат-зависимого синтеза, протекающего при непосредственном участии фермента метилентетрагидрофолатредуктазы (МТГФР) и коферментов (фолиевая кислота и витамины группы В).

Миелиновая оболочка – наиболее уязвимая часть периферического нерва. Она страдает в результате разрушения (токсические, иммунные механизмы) или недостаточного синтеза составляющих миелина (обменные нарушения, недостаток витаминов). В любом случае синтез миелина требует существенного напряжения многочисленных ферментных систем, поскольку общая масса этого вещества в организме превышает 200 гр.

Клинический синдром повреждения периферических нервов чаще всего связан с сегментарной демиелинизацией нервных волокон. Сегментарная демиелинизация (миелинопатия) означает повреждение миелиновых оболочек при сохранности аксонов. Наиболее существенным функциональным проявлением демиелинизации является блокада проводимости. Функциональная недостаточность в блокированном аксоне проявляется также, как и при пересечении аксона. Несмотря на то, что пересечение нерва и блокада проводимости при демиелинизации обнаруживают сходство по остроте развития двигательных и чувствительных расстройств, между ними имеются различия. Так при демиелинизирующих невропатиях блокада проводимости часто бывает преходящей и ремиелинизация может протекать быстро в течение дней или недель, нередко заканчиваясь выздоровлением (4). Таким образом, при этом процессе прогноз благоприятнее и восстановление идет быстрее, нежели течение. Важнейшим клиническим признаком сегментарной демиелинизации является расстройство функции по дистально-периферическому типу – чем больше протяженность периферического нерва, тем более заметными становятся нарушения проводимости. Прежде всего, это проявляется расстройствами чувствительности в дистальных отделах конечностей.

Итак, фолат-зависимый синтез миелина невозможен без витаминов группы В. Между тем, недостаток тиамина (витамин В1) считается одной из характерных черт типичных болезней цивилизации (5). Изменения характера питания с увеличением доли рафинированных углеводов, значительное закисление внутренней среды вследствие изменения структуры продуктов питания – не способствуют усвоению тиамина, даже если он в достаточном количестве присутствует в пище. Между тем В1 принимает участие в белковом синтезе, регуляции жирового и водно-солевого обмена. Многочисленными исследованиями установлено, что тиамин обладает антиоксидантными, иммуномодулирующими свойствами, участвует в метаболизме важнейших нейромедиаторов – серотонина и гамма-аминомасляной кислоты, ацетилхолина. Являясь основным коферментом МТГФР, он принимает непосредственное участие в синтезе миелина.

Витамин В6 – пиридоксин является коферментом более 100 ферментов, принимает участие в синтезе нейромедиаторов (триптофан, глицин, серотонин, дофамин, норадреналин, адреналин, гистамин). Он снижает уровень холестерина, гомоцистеина в крови. Витамин В6 контролирует эритропоэз и участвует в формировании иммунного ответа. Существует убедительная корреляция между снижением уровня пиридоксина в крови и клиническими проявлениями полиневропатий.

Витамин В12 (цианкобаламин) – основной источник кобальта, необходимого в процессах синтеза белка. В12 принимает непосредственное участие в синтезе метионина и нуклеиновых кислот. Он активирует все виды обмена веществ: белковый, жировой и углеводный. Установлено, что высокие концентрации цианкобаламина необходимы для предотвращения когнитивных нарушений (старческого слабоумия), депрессии. Участие В12 в синтезе миелина является его важнейшей функцией. Комплексные витаминные препараты нашли широкое применение в лечении больных с различными заболеваниями и патологическими процессами. Но наиболее значимо их применение при заболеваниях нервной системы. Не случайно витамины группы В заняли центральное место в лечении заболеваний периферической нервной системы. Среди многочисленных болезней нервной системы наиболее значимы показания для витаминных препаратов при полиневропатиях различного генеза (1 - 3). Хотя этиология полиневропатий крайне разнообразна, недостаток витаминов группы В объединяет большинство клинических вариантов этого неврологического синдрома. Согласно литературным данным, полиневропатии, возникающие вследствие осложнений сахарного диабета или алкогольной интоксикации, составляют более двух третей всех случаев полиневропатий (1). Современные исследования демонстрируют, что у пациентов, страдающих сахарным диабетом, дефицит тиамина развивается вследствие его повышенного выведения почками. Восполнение тиамина для больных сахарными диабетом является задачей повседневной практики. Установлено, что назначение тиамина в дозе около 300 мг в сутки в комплексе с витаминами В6 и В12 существенно уменьшает или устраняет проявления полиневропатии, в первую очередь, уменьшая нейропатическую боль (2). Помимо уменьшения проявлений расстройств чувствительности витамины при полиневропатии оказывают существенное влияние на проявления вегетативно-трофических нарушений при нейропатической форме синдрома диабетической стопы.

Системные нарушения обмена, протекающие с ожирением, в последние годы привлекают все большее внимание врачей. Оперативное лечение морбидного ожирения становится все более распространенной практикой. Оперативная реконструкция желудочно-кишечного тракта часто спасает пациентов от ряда фатальных осложнений. Однако, в последующем, в результате нарушения процесса усвоения биологически важных веществ, нередко больные страдают от нарушений со стороны периферической нервной системы. Пациенты, после хирургических операций по поводу морбидного ожирения требуют компенсирующего лечения с обязательным включением витаминов группы В в течение всего периоды реабилитации. Основной целью назначения витаминных препаратов в этом случае является предотвращение дисметаболических полиневропатий.

Острые воспалительные демиелинизирующие полиневропатии требуют парентерального введения витаминов группы В как в остром, так и восстановительном периоде. При этом для активации синтеза миелина необходима комбинация витаминов группы В с фолиевой кислотой (4).

Недостаток витаминов группы В при алкогольной полиневропатии обусловлен как минимум тремя факторами. Этиловый спирт ингибирует процесс фосфорилирования тиамина. Алкоголь нарушает всасывание всех витаминов в кишечнике и снижает печеночные запасы тиамина. Дефицит витаминов у алкоголиков связан с алиментарным фактором – недостаточно разнообразным питанием. У больных алкоголизмом лекарственные препараты, содержащие витамины, составляют важнейшую часть лечения. При этом необходимо длительное назначение препаратов, содержащих тиамин и пиридоксин. В открытом проспективном исследовании Е.А.Анисимовой (2001) изучалась эффективность бентиамина у мужчин, страдающих хроническим алкоголизмом. На фоне монотерапии бенфотиамином отмечено уменьшение болевого синдрома, редукция сенсорных, вегетативных и двигательных расстройств. Установлено увеличение скорости проведения по нервному волокну.

Безусловным показанием к назначению витаминных препаратов следует считать поражения черепных нервов различной этиологии. В клинической практике чаще всего комплексной терапии требует нейросенсорная тугоухость, неврит слухового нерва, невропатия лицевого нерва, невропатия зрительного нерва. В большинстве случаев в патогенезе невропатий черепных нервов существенную роль играют сосудистые факторы. Восстановление проведения по нервным стволам в этих случаях возможно при восстановлении микроциркуляции и длительном лечении витаминами группы В.

Относительно коротких курсов витаминной терапии требуют радикулопатии, связанные с вертеброгенными факторами. После устранения причин компрессии корешка, витамины группы В назначают на 2 – 3 недели, что в существенной мере ускоряет процесс реабилитации.

Препараты, содержащие витамины в необходимых пропорциях, широко представлены в продукции таких крупных производителей как корпорация . Все необходимые витамины содержит . Высокое содержание витаминов группы В отличает композицию Мультивитаминный комплекс пригоден как для профилактики поражений нервной системы, так и для лечебных программ. Из лекарственных средств в клинической практике нашли применение такие препараты как Мильгамма, нейромультивит.

Таким образом, лечение витаминами в комплексной терапии заболеваний периферической нервной системы не только не утратило своего значения, но получило более глубокое обоснование. Следует считать безусловным показанием назначение витаминов группы В во всех случаях повреждения нервной системы, в основе которых лежат процессы демиелинизации или нарушения ремиелинизации. Современная коррекция миелинопатий как системных обменных нарушений невозможна без своевременного и адекватного лечения препаратами, содержащими тиамин, пиридоксин и цианкобаламин. При заболеваниях, протекающих с нарушениями углеводного, жирового и белкового обмена (сахарный диабет) систематическое лечение витаминными препаратами необходимо для активации обменных процессов, восстановления процессов синтеза белковых соединений. Препараты, содержащие витамины совершенно необходимы для больных, страдающих от нарушений всасывания эссенциальных коферментов (алкоголизм, больные перенесшие сложные реконструктивные операции на органах желудочно-кишечного тракта).

Литература

1. Анисимова Е.И. Эффективность бенфотиамина в терапии алкогольной полиневропатии Журнал неврологии и психиатрии им. С.С.Корсакова. 2001. Т 12. № 101. С. 32-36.

2. Анциферов М.Б., Волкова А.К. Диагностика и лечение диабетической дистальной полинейропатии у больных сахарным диабетом в амбулаторной практике. РМЖ. 2008. Т. 16. № 15. С. 12 .- 15.

3. Зиновьева О.Е. Препараты альфа-липоевой кислоты в лечении диабетической полиневропатии. Неврология, психиатрия, нейросоматика. 2009. № 1. С. 58 – 62.

5. Mooney S., Leudorf J.E. Vitamin B6: a long known compound of surprising complexity. Molecules. 2009. T.14. p. 329 – 51.


Close